
www.manaraa.com

University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2006

A Reconfigurable Supercomputing Library for Accelerated Parallel A Reconfigurable Supercomputing Library for Accelerated Parallel

Lagged-Fibonacci Pseudorandom Number Generation Lagged-Fibonacci Pseudorandom Number Generation

Yu Bi
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Bi, Yu, "A Reconfigurable Supercomputing Library for Accelerated Parallel Lagged-Fibonacci
Pseudorandom Number Generation. " Master's Thesis, University of Tennessee, 2006.
https://trace.tennessee.edu/utk_gradthes/1505

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

www.manaraa.com

To the Graduate Council:

I am submitting herewith a thesis written by Yu Bi entitled "A Reconfigurable Supercomputing

Library for Accelerated Parallel Lagged-Fibonacci Pseudorandom Number Generation." I have

examined the final electronic copy of this thesis for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Master of Science, with a

major in Computer Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Donald W. Bouldin, Robert J. Harrison

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

www.manaraa.com

To the Graduate Council:

I am submitting herewith a thesis written by Yu Bi entitled “A Reconfigurable
Supercomputing Library for Accelerated Parallel Lagged-Fibonacci Pseudorandom
Number Generation.” I have examined the final electronic copy of this thesis for form and
content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Master of Science, with a major in Computer Engineering.

Gregory D.Peterson
Major Professor

We have read this thesis
and recommend its acceptance:

Donald W. Bouldin

Robert J. Harrison

 Accepted for the Council:
 Linda Painter

Interim Dean of Graduate Studies

(Original signatures are on file with official student records.)

www.manaraa.com

A Reconfigurable Supercomputing Library for Accelerated Parallel

Lagged-Fibonacci Pseudorandom Number Generation

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

Yu Bi
December 2006

www.manaraa.com

 ii

Copyright© 2006 by Yu Bi
All rights reserved.

www.manaraa.com

 iii

ACKNOWLEGEMENTS

First, I would like to thank my advisor, Dr. Gregory D. Peterson for his constant

support and instructive guidance. Second, I would like to thank Dr. Robert Harrison for his

support and great suggestions of my research and study. Third, I would like to thank Dr.

G.Lee Warren for his insight, explanation and instruction during my work. I would also

like to thank Dr. Don Bouldin for introducing me to FPGA design and serving on my

committee member.

A special thank also goes to my colleagues including Junqing Sun, Akila

Gothanaraman, Saumil Merchant, Shaoyu Liu, Zhenzhen Liu and Scott E. Fields. Without

their help, this work would not have been possible. To my friends, I would also like to

acknowledge them for their constant help and the happiness that they brought during my

study life.

This work was partially supported by the University of Tennessee Computational

Science Initiative and the National Science Foundation grant CHE – 0625598.

I dedicate this thesis to my mother and father.

www.manaraa.com

 iv

ABSTRACT

To help promote more widespread adoption of hardware acceleration in parallel

scientific computing, we present portable, flexible design components for pseudorandom

number generation. Due to the success of the Scalable Parallel Random Number

Generators (SPRNG) software library in stochastic computations (e.g., Monte Carlo

simulations), we developed an efficient and portable hardware architecture fully

compatible with SPRNG’s Parallel Additive Lagged Fibonacci Generator (PALFG). Our

general design produces identical results for all the parameter sets that SPRNG supports

and yields high performance parallel random number generators which can each generate

162 million 31-bit uniform random integers per second on Xilinx Virtex II Pro FPGAs.

The friendly design interface makes it easy for users to integrate into their applications,

particularly computational scientists unfamiliar with reconfigurable hardware. Due to its

fast generation speed and friendly interface, this uniform random number generator is

being targeted as an open core for parallel scientific computing.

www.manaraa.com

 v

TABLE OF CONTENTS

1. INTRODUCTION...1

1.1 THE GROWING NEED FOR GOOD RANDOM NUMBER GENERATORS1
1.2 RECONFIGURABLE COMPUTING ...2
1.3 RECONFIGURABLE SUPERCOMPUTING ...3
1.4 MOTIVATION ..3

2.BACKGROUND REVIEW...5

2.1 FPGA-BASED RANDOM NUMBER GENERATORS (RNG)...5
2.1.1 LFSR RNG...5
2.1.2 Multiple LFSRs..6
2.1.3 Cellular Automata RNG ..6
2.1.4 Mersenne Twister RNG (MT) ...7
2.1.5 True RNG...7

2.2 SCALABLE PARALLEL RANDOM NUMBER GENERATOR (SPRNG) LIBRARY................8
2.2.1 Combined Multiple Rescursive Generator..8
2.2.2 48 bit and 64 bit Linear Congruential Generator with Prime Addend9
2.2.3 Prime Modulus Linear Congruential Generator..9
2.2.4 Multiplicative Lagged Fibonacci Generator ...9
2.2.5 Modified Additive Lagged Fibonacci Generator (PALFG)10

2.3 STATISTIC ANALYSIS ...12
2.3.1 Diehard Test ...12
2.3.2 Grading Rules...13
2.3.3 Statistics of Common Hardware RNG..14
2.3.4 Statistics of PALFG in SPRNG...14

3. SPRNG DESIGN ..18

3.1 DESIGN CRITERIA...18
3.2 PALFG EXECUTION IN SPRNG ..18
3.3 PALFG DESIGN HAZARDS ..20
3.4 PALFG EXECUTION SEQUENCE ..22
3.5 ALFG UNIT DESIGN ..23
3.6 SEED INITIALIZATION ALGORITHM FOR THE ALFG DESIGN30
3.7 PALFG INTERFACE DESIGN ..31

4. SPRNG IMPLEMENTATION...32

4.1 OVERALL PALFG MODULE ..32

www.manaraa.com

 vi

4.2 CONTROLLER BLOCK ...32
4.3 ALFG BLOCK ..35

5. RESULTS..38

5.1 TEST SAMPLES GENERATION ...38
5.2 RTL VERIFICATION ...38
5.3 SYNTHESIS RESULTS ..40
5.4 POST SYNTHESIS SIMULATION...41
5.5 PLACEMENT AND ROUTING (PAR) ..41
5.6 FPGA IMPLEMENTATIONS...42
5.7 PERFORMANCE SUMMARY ...44

6. SPRNG CORE TARGETED ON SUPERCOMPUTER CRAY XD146

6.1 CRAY XD1 ARCHITECTURE...46
6.2 CRAY RAPIDARRAY TRANSPORT IP CORE..48
6.3 CRAY XD1 DESIGN TEMPLATE ...48
6.4 SPRNG INTERFACE IMPLEMENTATION TARGETED ON CRAY XD1............................49

6.4.1 Operational Scenario..49
6.4.2 User Application Block..50
6.4.3 Memory Mapping ..52
6.4.4 RTL Simulation..52

7. CONCLUSION ...55

7.1 SUMMARY ..55
7.2 FUTURE WORK...56

LIST OF REFERENCES ..57

APPENDICES...61

APPENDIX I-- MAIN PALFG VHDL CODES ...62
APPENDIX II-- TEST RANDOM NUMBERS GENERATION CODES ..90

VITA..113

www.manaraa.com

 vii

LIST OF TABLES

TABLE 1. PARAMETERIZED PALFG GENERATORS PROVIDED BY SPRNG..........................11
TABLE 2. DIEHARD TEST RESULTS FOR COMMON RNG IN HARDWARE [17]15
TABLE 3. DIEHARD TEST RESULTS FOR PALFG I ...16
TABLE 4. DIEHARD TEST RESULTS FOR PALFG II..17
TABLE 5. {17,5} PALFG EXECUTION SEQUENCE...21
TABLE 6. LOOK AHEAD APPROACH ON {17,5} PALFG..25
TABLE 7. LOOK AHEAD APPROACH ON {31,6} PALFG..28
TABLE 8. PALFG SOURCE USAGE AND PERFORMANCE ...41
TABLE 9. PALFG TIMING PERFORMANCE COMPARISONS ..45
TABLE 10. XUP MEMORY MAPPING ...54

www.manaraa.com

 viii

LIST OF FIGURES

FIGURE 1 CELLULAR AUTOMATA RANDOM NUMBER GENERATOR ..7
FIGURE 2. PALFG EXECUTION SEQUENCE ...23
FIGURE 3. ALFG SCHEMATIC DESIGN, K ODD ..27
FIGURE 4.ALFG SCHEMATIC DESIGN, K EVEN...30
FIGURE 5. PALFG INTERFACE SCHEME ..31
FIGURE 6. PALFG OVERALL ARCHITECTURE..33
FIGURE 7. CONTROLLER STATE MACHINE...34
FIGURE 8. MEMORY ARRANGEMENT ...37
FIGURE 9. SOFTWARE INTERFACE..39
FIGURE 10. MODLESIM SIMULATION RESULTS – {521,168} ..40
FIGURE 11. POST-SIMULATION –{607, 334} ...42
FIGURE 12. FPGA IMPLEMENTATION TEST PLATFORM ..43
FIGURE 13. FPGA IMPLEMENTATION VERIFICATION RESULTS – {1279, 861}44
FIGURE 14. RAPIDARRAY TRANSPORT MODULE INTERFACE ..47
FIGURE 15. FPGA ORGANIZATION IN CRAY XD1 ...49
FIGURE 16. OPERATIONAL SCENARIO IN CRAY XD1...50
FIGURE 17. THE APPLICATION BLOCK SHCEME ..51
FIGURE 18. RAPIDARRAY TRANSPORT CLIENT STATE MACHINE ...53
FIGURE 19. BLOCK RAM INTERFACE BLOCK DIAGRAM ...53
FIGURE 20. PALFG INTERFACE BLOCK DIAGRAM ...54

www.manaraa.com

 1

1. Introduction
In many computational science and engineering applications, performance

acceleration is the most essential and crucial issue. Moreover, the accuracy of stochastic

computation results is critically influenced by the quality of the random number generators
[1]. This thesis addresses both these issues by developing a hardware accelerated

implementation of a good random number generator for parallel scientific application to

accelerate the performance.

This introduction examines the need for fast random number generators to accelerate

scientific and engineering computations. Chapter 2 presents a study of relevant previous

work. Chapter 3 gives an overview of the design process and algorithms. Chapter 4

presents the design implementation, and Chapter 5 presents a discussion of the results.

Chapter 6 addresses the implementation application on the Cray XD1 supercomputer.

Finally, Chapter 7 summarizes, gives conclusions, and presents possibilities for future

work.

1.1 The Growing Need For Good Random Number Generators

Random number generators are used intensively in many areas. One important

application is cryptography. With the expanding use of digital communications such as

computer networks, the Internet, and wireless communication, the need for the protection

of transmitted information using cryptography is greatly growing. Random numbers are

used to generate cryptographic keys, initialization vectors, padding bits and blinding

values [2]. To ensure the security, good random number generators with good statistical

properties are required. For example, in data security applications, the weakness of random

number generators could be used to perform cryptographic attacks. Thus, good random

number generators play a key role in this the strong cryptographer applications.

www.manaraa.com

 2

Another important area that needs random number generators is Monte Carlo

simulation. Monte Carlo simulation is a method of simulating a physical process using

random numbers to sample the state space. With the tremendous advances in serial and

parallel computing, the Monte Carlo method has evolved to tackle many complex

problems in such diverse areas as nuclear medicine [3], finance [4], and computational

chemistry [5]. Being statistical techniques, MC methods often require a large number of

random samples to reduce the statistical error in a computed result. Therefore a good

random number generator with long period and minimum correlation is desirable in MC

applications. Without good random number generators, unwanted statistical bias and

incomplete sampling will appear, which will result in the questionable result from the MC

simulations.

1.2 Reconfigurable Computing

Reconfigurable computing (RC), the use of programmable logic to accelerate

computation, already became popular in many application areas during last several years.

Digital signal processing (DSP) is a significant application domain in RC. A number of

papers addressed the DSP reconfiugrable applications. In
[9], Lund et al discussed a flexible,

reconfigurable convolution decodeing system using FPGAs. Kim et al. in [10] described an

adaptive antenna signal processing algorithm for improved direction-of-arrival estimation.

In the applications of image and video, reconfigurable computers also have been used

successfully for accelerating low-level image processing algorithms such as local

neighborhood functions. Moreover, cryptographic algorithms are particularly well suited

to reconfigurable logic implementations [9]. In [12], a fully pipelined AES encryption

processor mapped to the Xilinx Virtex-II Pro achieved up to 21.5Gb/s while the highest

performance software implementations have been reported at 580 Mb/s. Bioinformatics

also can benefit a lot from RC technology. Various generic algorithms have been mapped

to hardware. For instance, the FPGA implementation of a software algorithm was

www.manaraa.com

 3

proposed by Yamaguchi, Maruyama and Konagaya [11]. Dynamic Programming (DP)

algorithms were implemented on the Splash and Splash 2 FPGA system implementations

in the beginning of the 90’s[9]. RC has demonstrated great promise in diverse areas.

1.3 Reconfigurable Supercomputing

Due to the success of RC applications, supercomputer corporations are applying RC

technology into supercomputing applications. Cray and Silicon Graphics have launched

products including FPGAs used as accelerators. Existing supercomputing applications

need to be modified to take advantage of RC. Urban road traffic simulation [13] is one

representative example of reconfigurable supercomputing applications. The authors

partitioned the simulation application between hardware and software. This simulation is a

simplified version of the TRANSIMS [14] road network simulator. Since the TRANSIMS

uses cellular automaton (CA) model, a high parallel computational model [13], the

simulation has the potential to use the FPGA in some parallel executions. By providing

hardware/software co-design in supercomputing application, the speedup over software

reaches 34X including the communication cost. Therefore, reconfigurable supercomputing

promises significant performance improvement, which has been attracting researchers in

various computation fields.

1.4 Motivation

Performance acceleration is always one of the significant topics in scientific and

engineering applications. This thesis is one of the numerous tires for the speedup purpose.

We are trying to construct valuable hardware implementations of pseudorandom number

generators suitable for parallel computing simulations. A well known random number

generator software library – Scalable Parallel Random Number Generator Library

(SPRNG), which is widely used in Monte Carlo Simulation, is chosen for hardware

implementation. Since no one has implemented the SPRNG software library in hardware

www.manaraa.com

 4

before, SPRNG’s Parallel Additive Lagged-Fibonacci Generator (PALFG) [1] is firstly

implemented among all the random number generators provided by SPRNG library

because of its good statistical properties and popularity.

www.manaraa.com

 5

2.Background Review
The common random number generators are reviewed in this chapter. The sections

are organized as follows. Firstly current random number generators that have been

implemented in FPGA are presented. Then the Scalable Parallel random number generator

(SPRNG) library is introduced including all the random number generators it provided.

Finally the Diehard test results of modified Additive Lagged Fibonacci random number

generators in SPRNG are detailed listed so that statistics of several common random

number generators are able to be compared.

2.1 FPGA-based Random Number Generators (RNG)

Random number generators are widely applied in diverse FPGA applications such as

key generations in cryptography and genetic algorithms. In order to meet special

requirements of RNG in applications such as high quality, fast generation rate, long period

or either two of them, different RNGs have been chosen and developed. The most

common FPGA-based RNGs include Linear Feedback Shift Register (LFSR), Multiple

LFSR, Cellular Automata (CA), Multiple CA, Mersenne Twister and True RNG.

2.1.1 LFSR RNG

Linear feedback shift registers RNG is widely used in FPGA applications, as its

structure is simple and efficient in hardware design. A Linear feedback shift register is a

shift register whose input bit is a linear function of its previous state [16]. The linear

function is usually exclusive-or and inverse-exclusive-or. For an LFSR RNG of length n,

the function can be expressed as Equation 2.1.

∑=++++=
−

=
−−

→ 1

0
11221100 ...)(

n

i
iinn xcxcxcxcxcxf Equation - 2.1

www.manaraa.com

 6

The obvious weakness of this type of RNG is that the statistics of LFSR RNG are not

good since there is 50% probability that the value at next time slot can be predicted.

Besides the LFSR period, 12 −n , is not long, which is not a feature of good random

number generators.

2.1.2 Multiple LFSRs

One method of obtaining better statistical results of the LFSR of length n is to allow

the LFSR to run for n cycles before reading another number [17]. However it limits the

generation rate and it is not explored any further. An equivalent result can be obtained by

implementing n LFSRs of length m and using a single bit from each LFSR at each LFSR

at each time step. The multiple LFSRs require the seed of each LFSR to be independent.

As far as the FPGA implementation is concerned, in Xilinx Virtex FPGA, implementing a

long shift register is not sufficient because the look up tables can implement a 16 bit shift

register very easily, but longer shift registers require more extensive routing resources[17].

2.1.3 Cellular Automata RNG

Cellular Automata RNG is another popular RNG for hardware implementation. The

CA algorithm is defined as follows. A one dimension Cellular Automata contains a string

of cells. Each cell has two neighbors – left and right. For the first cell, its left neighbor is

the last cell in the string as shown in Figure 1. Similar, the last cell’s right neighbor is the

first cell. At each time step, the value of any cell c is given by a rule. For example, the rule

can be defined as
tttt

rightleftcc ⊕⊕=
+1

 where ⊕ denotes the exclusive OR function.

CA RNGs presents good three main statistical features no period, independence and high

dimensionality [18]. However, its speed is not satisfying and can’t compete with LFSR,

linear congruencial generators (LCG) and other generators. As the same case of multiple

LFSR RNG, statistics of the results should be much better.

www.manaraa.com

 7

Figure 1 Cellular Automata Random Number Generator

2.1.4 Mersenne Twister RNG (MT)

Mersenne Twister (MT) RNG is developed by Makoto Matsumoto and Takuji

Mishimura in 1996/1997[19]. It passes numerous tests for statistical randomness, including

the stringent Diehard Tests and it is widely applied for Monte-Carlo simulations. The

Mersenne Twister is a form of linear feedback shift register with an extremely long period

of 1219937 − and 623 dimensional equidistribution. Its equation is expressed as follow:

AXXXX l
k

u
kmknk)|(: 1+++ ⊕=

where the ⊕ symbol denotes the exclusive or operation (XOR), n= 624, m=397, and
uX , lX being X with upper and lower bit masks applied.

 Due to MT simple, long period and excellent statistical properties, it has been

implemented on FPGAs and has been successfully applied in various applications [22] [23].

2.1.5 True RNG

All the random number generators considered so far are pseudorandom number

generators. Pseudorandom number generators use deterministic processes to generate a

series of outputs from an initial seed state. Unlike pseudo random number generator, a true

random number generator (TRNG) uses a non-deterministic source to produce randomness.

Most operate by measuring unpredictable natural processes such as thermal noises,

atmospheric noise and electronic noise. The TRNG produces reasonable and satisfactory

random numbers. However, surprisingly, few FPGA hardware implementations of TRNGs

have been reported. [19] was reported FPGA implementation of a TRNG by Fischer and

Drutarovsky using a variation of oscillator sampling. In [19], the TRNG, which employs

www.manaraa.com

 8

oscillator phase noise, was implemented. However, although TRNG provides excellent

statistics that pseudorandom number generator can’t compete with, its sampling a source

of noise are often slow [20] so that they are not quite applicable to high speed system.

2.2 Scalable Parallel Random Number Generator (SPRNG) Library

SPRNG software was funded from DARPA and was especially designed for

large-scale, parallel Monte Carlo Simulations. Until now SPRNG library has been widely

applied into this field as its compact codes, large scalability, and great statistical properties
[25] [26].

To be parallel and scalable, SPRNG mainly focuses on the methods based on

parameterization instead of splitting methods such as the leap-frog or blocking method. In

the sequence splitting method, a serial random number stream is partitioned into

non-overlapping contiguous subsequences. Parameterization method identifies a parameter

in the underlying recursion of a serial random number generator that can be varied. Each

valid value of this parameter leads to recursion that produces a unique full-period stream

of random numbers[24].

SPRNG provides parameterized versions of the pseudorandom number generators:

combined Multiple Recursive Generator, 48-bit and 64-bit linear congruential generators,

modified additive and multiplicative lagged-Fibonacci generators, and Prime Modulus

Linear Congruential Generator. In the next parts, these generators properties including

recursion functions, period and independence streams will be briefly introduced.

2.2.1 Combined Multiple Rescursive Generator

This generator follows the relation as Equation 2-4:

6432 2mod2)()()(×+= nYnXnZ Equation- 2.4

www.manaraa.com

 9

where)(nX is the sequence generated by the 64-bit linear congruential generator and

)(nY is prime modulus multiple recursive generator which is expressed in Equation 2-5

)2147483647(mod)5(104480)1(107374183)(−×+−×= nYnYnY Equation 2-5

The period of this RNG is 2192 and the number of the independent streams available

reaches to over 810 .

2.2.2 48 bit and 64 bit Linear Congruential Generator with Prime Addend

This RNG recurrence equation is expressed in Equation 2-6:

MpnaXnX mod)1()(+−= Equation 2-6

where)(nX is the nth term in the sequence, p is a prime number and a is the multiplier.

When 482=M , the RNG is 48 bit LCG with Prime Addend. When 642=M , the RNG is

64 bit LCG.

The period of 48 bit LCG is 482 and its number of distinct streams is 192 while 64

bit LCG is 642 and its number of distinct streams available is over 810 .

2.2.3 Prime Modulus Linear Congruential Generator

This generator’s relation is expressed as Equation 2-7 . The maximal period is

2261 − and the number of distinct streams available is roughly 582 . For each stream, the

a differs.

)12(mod)1()(61 −−×= nXanX Equation 2-7

2.2.4 Multiplicative Lagged Fibonacci Generator

This generator is following the equation 2-8

MlnXknXnX mod)()()(−×−= Equation 2-8

www.manaraa.com

 10

where l and k are called the lags of the generator and it is defined that l is larger than

k . In SPRNG, M is chosen to be 642 . The period of this generator is)12(261 −l and

the number of distinct streams available is []1)1(632 −−l .

The random number sequence obtained is determined by the l initial values of the

sequence X . It is important to use the same original seed to initialize l initial values for

each stream so that all the streams with this generator are independent.

2.2.5 Modified Additive Lagged Fibonacci Generator (PALFG)
 Normally, Additive Lagged Fibonacci Generator (PALFG) is defined as Equation 2-9

322mod)()()(lnXknXnX −+−= Equation 2-9

where l and k are called the lags of the generator and it is defined that l is larger than

k . In the SPRNG, the authors modified the Lagged Fibnocci Random Number Generator

to improve the statistical property. The modified ALFG (PALFG) has the following

relations:

)()()(nYnXnZ ⊕= Equation 2- 10

Where ;2mod)()()(32lnXknXnX −+−= ;2mod)()()(32lnYknYnY −+−=

 SPRNG provides total 11 types of random number generator as shown in Table 1.

PALFG has long period, which is)12(231 −l and its number of distinct streams available

are []1)1(312 −−l . When l is 1279, the period is approximately 13102 and impressively, this

random number generator gives 396172 distinct streams. This shows that this random

number generator has great scalability and parallelism that are attractive to those parallel

huge simulations.

www.manaraa.com

 11

 Table 1. Parameterized PALFG Generators Provided By SPRNG

l k m

17 5 32

31 6 32

55 24 32

63 31 32

127 97 32

521 168 32

521 253 32

607 273 32

607 334 32

1279 418 32

1279 861 32

www.manaraa.com

 12

2.3 Statistic Analysis

2.3.1 Diehard Test

Diehard tests are statistical tests for measuring the quality of a set of random numbers
[27]. They are widely accepted as one of most authoritative tests. Most random number

generators demonstrate its statistics properties using Diehard test results. Diehard tests

have 12 common tests, which are introduced briefly in the following.

1. Birthday Spacing: The spacing between the random points should be asymptotically

poisson distributed.

2. Overlapping Permutations: Based on the analysis results of sequences of five

consecutive random numbers, the 120 possible orderings should occur with

statistically equal probability.

3. Ranks of matrices: Part bits from some random numbers are chosen to form a matrix

{0,1}. The rank of the matrix will be counted

4. Monkey Tests: Some bits in the sequences are combined as “words”. The number of

the overlapping words in a stream should follow a known distribution.

5. Count the 1s: the ‘1’ bits in each chosen byte are counted and the count number will

be converted to “letter” and, five letters are combined together into a word, the

occurrence of five-letter word will be counted.

6. Parking Lot Test: In a square of side 100, randomly “park” a car using increasing unit

circles. If the circle overlaps an existing one, try again. After 12000 tries, the number

of successfully “parked” circles should follow a certain normal distribution.

7. Minimum Distance Test: In a square of side 10,000, find the minimum distance

between the pairs. The square of this distance should be exponentially distributed with

a certain mean.

www.manaraa.com

 13

8. Random Spheres Test: Choose 4,000 points in a cube of edge randomly and center a

sphere on each point. The smallest sphere’s volume should be exponentially

distributed with a certain mean.

9. The Squeeze Test: Multiply 312 by random floats on)1,0[until reaching 1 and

repeat the above procedure 100,000 times. The number of floats needed to reach 1

should follow a certain distribution.

10. Overlapping Sums Test: Every 100 consecutive floats are added and the sums should

be normally distributed with characteristic mean and sigma.

11. Run Test: Count the ascending and descending runs in a long sequence. The count

number should follow a certain distribution.

12. The Craps Test: Play 200,000 games of craps and find the number of wins and the

number of throws per game. Each count should follow a certain distribution.

2.3.2 Grading Rules

To simplify the diehard results and make the results readable and understandable for

everyone, Johnson [29] introduced a grading rule as follows. He assigned a score to a

p-value as good, bad or suspect, three different grade. If p > 0.998 then it is classified as

bad. If 0.95< p<0.998 then it is classified as suspect. All other p-values are classified as

good. Every bad p-value scores 4, every suspect p-value scores 2 and good p-values score

zero. For each RNG, the scores for each test were summed, and the total for each RNG is

the sum of all the test scores for that RNG. Using this scheme, high scores indicate a poor

RNG and low scores indicate a good RNG. In this chapter, this grading rule is applied to

evaluate the statistics of the random number generators.

www.manaraa.com

 14

2.3.3 Statistics of Common Hardware RNG

Peter Martin [17] presented the Diehard test results of several common implemented

hardware random number generators as mentioned in the above, which is shown in Table

2. The max score means that the random number generator doesn’t pass the test. From the

table we can see that true random number generator has the best statistical property.

However, LFSR, which is the most widely used in the hardware implementation, has the

worst statistics compared with others. Therefore, although LFSR is simple and easy to be

implemented in the hardware, in most hardware applications that highly demand good

random number generators such as Monte Carlo simulations, LFSR is not an ideal choice.

2.3.4 Statistics of PALFG in SPRNG

In this section, I presented PALFG diehard tests results followed by the above

grading rule. The test samples are obtained from SPRNG library and the number of test

samples reaches about 3 million 32-bit random numbers.Table 3 and Table 4 listed all the

11 parameter sets of PALFG statistical results. From the experiment results, each PALFG

type has almost the same statistical property, whose grade is around 240. Except True

RNG diehard results, the PALFG ranks 2nd in all the pseudorandom number generators

listed above, while 32 LFSR ranks highest among them. Although 32 LFSR provides

better property in the Diehard tests, the 32 LFSR is not designed for parallel and scalable

parallel simulations. [16] mentioned that SPRNG provided a test suite that implemented all

the tests described by Knuth[30] and except 48-bit LCG all other SPRNG random number

generators passed the Diehard tests. In conclusion, from the Diehard test results, PALFG is

a good random number generator and it is worth being implemented in hardware as far as

the performance speedup of scalable and parallel simulations is concerned. Because it is

widely used, an accelerated SPRNG will help a diversity of computational science

applications.

www.manaraa.com

 15

Table 2. Diehard Test Results for Common RNG in Hardware [17]

Test Max
Score

LFSR EQG 32LFSR IDCA 32CA True

Birthday 36 36 8 2 0 8 0
Overlapping
Permutation

8 8 0 4 8 8 0

Binary Rank
32 * 32

8 8 2 8 2 6 0

Binary Rank
6x

104 104 40 8 140 70 4

Bitstream 80 80 0 0 80 80 4
Overlapping
Pairs tests

328 328 188 94 328 320 6

Count the
ones(stream)

8 8 8 8 8 8 0

Count the
Ones (specific)

100 100 42 30 100 100 2

Parking Lot 44 4 0 0 4 2 0
Minimum
Distance

4 4 0 4 4 4 0

3D spheres 84 4 0 2 4 2 4
Squeeze 4 4 0 0 4 4 0
Overlapping
Sums

44 44 0 0 6 0 2

Runs 16 16 0 2 16 8 0
Craps 8 8 0 0 8 12 0
Total 876 756 288 162 676 640 22

www.manaraa.com

 16

Table 3. Diehard Test Results for PALFG I

Test Max
Score

LFG
(1279,861)

LFG
(17, 5)

LFG
(31,6)

LFG
(55,24)

LFG
(63, 31)

Birthday 36 4 4 4 4 4
Overlapping
Permutation

8 0 0 2 0 0

Binary Rank
32 * 32

8 8 8 8 8 8

Binary Rank
6x

104 12 6 8 10 8

Bitstream 80 80 80 80 80 80
Overlapping
Pairs tests

328 12 24 22 16 20

Count the
ones(stream)

8 8 8 8 8 8

Count the
Ones
(specific)

100 6 8 6 6 10

Parking Lot 44 44 44 44 44 44
Minimum
Distance

4 4 4 4 4 4

3D spheres 84 4 4 4 4 4
Squeeze 4 -- -- -- -- --
Overlapping
Sums

44 44 44 44 44 44

Runs 16 0 0 2 0 0
Craps 8 8 8 8 8 8
Total 876 234 242 244 236 244

www.manaraa.com

 17

Table 4. Diehard Test Results for PALFG II

Test Max
Score

LFG
(127,
97)

LFG
(521,
353)

LFG
(521,168
)

LFG
(607, 334)

LFG
(607, 73)

LFG
(1279,418)

Birthday 36 4 4 8 4 4 4
Overlapping
Permutation

8 0 4 0 0 2 0

Binary Rank
32 * 32

8 8 8 8 8 8 8

Binary Rank
6x

104 6 4 4 6 6 4

Bitstream 80 80 80 80 80 80 80
Overlapping
Pairs tests

328 18 20 20 20 22 22

Count the
ones(stream)

8 8 8 8 8 8 8

Count the
Ones
(specific)

100 8 4 4 4 8 6

Parking Lot 44 44 44 44 44 44 44
Minimum
Distance

4 4 4 4 4 4 4

3D spheres 84 4 4 4 4 4 4
Squeeze 4 -- -- -- -- -- --
Overlapping
Sums

44 44 44 44 44 44 44

Runs 16 0 0 0 4 0 0
Craps 8 8 8 8 8 8 8
Total 876 238 238 238 240 240 234

www.manaraa.com

 18

3. SPRNG Design
The design of SPRNG’s Parallel Additive Lagged-Fibonacci Generator (PALFG)[1] is

described in this chapter. The sections are organized as follows. First, three design criteria

are presented. Second, the PALFG execution steps in software are elaborated in the order

that they are conducted. Next, the hazards in design are proposed. Finally, a neat and

efficient design flow, as well as the solutions to the hazards, is presented in detail.

3.1 Design Criteria

As the random number generation hardware implementation is targeted to

applications in high performance scientific computing, three important design criteria are

considered. First, the hardware implementation should produce random numbers identical

to those of the corresponding software SPRNG generator for all values of the parameters l

and k supported by SPRNG, because the implementation will be accepted for scientific

simulations only if an exact reproduction of the SPRNG generator is provided. Thus, the

final implementation should be rigorously tested to verify the output results.

Second, the design should be general. It should be suitable for all the parameters l and

k supported by SPRNG and also flexible to accommodate future expansion to

representations larger than 32 bits. Moreover, to achieve high performance, we prefer an

implementation that produces one random number per clock cycle.

Third, the design should be sufficiently portable and as simple as possible. A compact

design allows the remaining FPGA logic resources to be utilized for other purposes.

3.2 PALFG Execution in SPRNG

It is observed that there is certain correlation in the Additive Lagged-Fibonacci

number generator (ALFG). SPRNG modified the ALFG, called PALFG, to avoid this

correlation by the equation:

www.manaraa.com

 19

YXZ ⊕=

where X and Y are two distinct ALFG sequences. Prior to the XOR operation, nx in X

is modified by setting the least significant bit to zero and by right shifting ny in Y to the

right by one bit. Following the XOR operation, the least significant bit is ignored to yield a

31-bit uniform random integer. The following pseudo code describes the PALFG

algorithm implementation in SPRNG.

1. Initialization Seeds

2. Build up two arrays x and y with length L to store L 32-bit random numbers. Each of

arrays has two pointers (hptr and lprt)

3. Generate an unsigned integer random number

lptr = hptr+k; // calculate low pointer address

if (lptr >= l) lptr - = l; // calculate low pointer address

x[hptr] = x[hptr] + x[lptr]; // update X value

y[hptr] = y[hprt] + y[lptr]; // update Y value

if (--hptr <0) hptr = l-1; // calculate high pointer address

 z = ((x[hptr] & $FFFFFFFE) xor (y[hptr] >>1)) ; // calculate Z

new value = z >> 1 /*random number */

if(--lptr < 0) lptr = l-1; // calculate low pointer address

x[hptr] = x[hptr] + x[lptr]; // update X value

y[hptr] = y[hprt] + y[lptr]; // update Y value

www.manaraa.com

 20

A {17,5} random number generator example in SPRNG is described here to illustrate

this pseudo code and propose an efficient design. As X and Y sequences are produced in

the same way, Table 5 only lists X sequence execution steps. From the table, it is observed

that two add operations execute simultaneously in each iteration and the sum result of

stage 1 is selected as the one of the two operands in the next XOR step.

3.3 PALFG Design Hazards

Table 5 infers that there are four execution steps -- Read, Accumulation, Write, and

Selection, that should be completed in one clock cycle to produce one random number per

clock cycle. Hence, two types of hazards can occur: structural hazards and data hazards.

Structural Hazard: Four data values have to be read and two data values have to be

written in the same clock. The requirement for a six-port memory results in a potential

structural hazard because the FPGAs we are using don’t include 6-port RAMs.

Data Hazard: The design must work correctly with respect to potential data hazards.

In table 5, since 0X has to be available in the first and third iteration, the new calculated

0X must be written back to memory in the second iteration. Therefore, for the {17,5}

generator, its design at most has two pipeline steps. Read and accumulation operations are

executed in the same step, which greatly influences the performance of the design. Three

pipeline stages (read, accumulate, write back) in this case are preferred. Unfortunately, a

Read After Write (RAW) data hazard will occur. Hence, the pipeline requirements

coincide with the lag k. For the general design to be applicable for all SPRNG parameter

sets, the generators that have the smallest lag k, {17,5} and {31, 6}, have to be satisfied

with a number of pipeline steps to avoid the RAW hazard.

Thus, these two hazards have to be investigated and be avoided in the design to

achieve the optimum performance.

www.manaraa.com

 21

Table 5. {17,5} PALFG Execution Sequence

Iteration Stage1 Stage2 Number Selected

Initialize -- --

0 0X = 0X + 12X 1X = 1X + 13X
0X

1 1422 XXX += 1533 XXX += 2X

2 1644 XXX += 055 XXX += 4X

3 166 XXX += 277 XXX += 6X

4 388 XXX += 499 XXX += 8X

5 51010 XXX += 61111 XXX += 10X

6 71212 XXX += 81313 XXX += 12X

7 91414 XXX += 101515 XXX += 14X

8 111616 XXX += 1200 XXX += 16X

9 1311 XXX += 1422 XXX += 1X

10 1533 XXX += 1644 XXX += 3X

11 055 XXX += 166 XXX += 5X

www.manaraa.com

 22

Table 5 Continued

Iteration Stage1 Stage2 Number Selected

12 277 XXX += 388 XXX += 7X

13 499 XXX += 51010 XXX += 9X

14 61111 XXX += 71212 XXX += 11X

15 81313 XXX += 91414 XXX += 13X

16 101515 XXX += 111616 XXX += 15X

17
0X = 0X + 12X 1X = 1X + 13X 0X

3.4 PALFG Execution Sequence

According to the modified algorithm of ALFG in SPRNG, Figure 2 shows PALFG

execution sequence. First, two independent 32-bit ALFG units (labeled as X and Y) of

identical architecture coupled by a 32-bit exclusive-or unit generate two independent

pseudorandom numbers. Prior to XOR operation, the output of X is modified by setting

the least significant bit to zero and by right shifting the output of Y by one bit. The overall

PALFG sequences are quite simple while the ALFG unit is more complex since care

should be taken in this module to avoid the hazards and implement an efficient general

random number generator for all parameters in SPRNG.

www.manaraa.com

 23

Figure 2. PALFG Execution Sequence

3.5 ALFG Unit Design

To avoid the structural hazard, we can easily build up a virtual six-port memory by

accommodating multiple dual port memory resources. Compared with the structural

hazard, the solution to the data hazard is more complex if we want to satisfy the three

design criteria. For instance, because the pipeline requirements depend on the lag k, the

short pipeline of the {17,5} generators poses serious timing issues. This is because the

SPRNG PALFG implementation must advance each ALFG forward by two recurrence

steps every time that a random number is generated. So if we can design the hardware

such that the number of pipeline steps is independent of the k, the data hazard will be

avoided. The approach contained in this thesis is that rather than try to have dependent

data updated and rewritten to memory so that it is available for reading ⎥⎦
⎥

⎢⎣
⎢

2
k clocks later,

it makes sense to go ahead and satisfy the dependency first before writing the data back to

memory, which is called a look ahead approach or forwarding. In other words, we can

make values iX as operands appear in the two stages of the same iteration by computing

recurrence steps out of order as long as the data dependencies are satisfied. To fully

illustrate this design, the {17, 5} generator is considered once again. For the {17, 5}

www.manaraa.com

 24

generator, we can see from the table 5 that in the iteration zero, the output 0X of the first

stage resulting from the operation 1200 XXX += is used in the second stage of the second

operation 055 XXX += . By advancing two operations of the second stages, the 0X value

appears in both stages of the same iteration. Then the updated 0X doesn’t need to be

written back to the memory until after ⎥⎦
⎥

⎢⎣
⎢

2
l clocks, which is much longer than ⎥⎦

⎥
⎢⎣
⎢

2
k . Then

the number of pipeline steps can be extended and the data hazard is avoided. Table 6 lists

the example execution flow steps of {17, 5} generator. Given the above idea, our ALFG

architecture is proposed. In the design, three separate memory resources (denoted XA, XB

and XC) are used to support the three required simultaneous reads from memory. The

corresponding schematic design is presented in Figure 3. A1 denotes the output of the first

stage (recurrence) operation, which is just the updated value of nX . A1 serves as the input

for the second stage. A2 is the output of the second operation. At the end of the iteration,

the outputs A1 and A2 are written to memories. The output A1 is written to XC because it

will need to be read from XC after ⎥⎦
⎥

⎢⎣
⎢ −−

2
1kl clocks. Similarly, the output A2 is written

simultaneously to both XA and XB and is not used again until after ⎥⎦
⎥

⎢⎣
⎢ −−−

2
)1(kkl if

()kl 2> or ⎥⎦
⎥

⎢⎣
⎢ −−−

2
)1(2 kkl if ()kl 2< . In this way, we avoid having to perform more

than one write to each memory resource per clock. The desired 32-bit random numbers are

obtained by tapping the A1 output, which corresponds to the column labeled in “Stage 1”

in Table 6. This cycle will continue indefinitely and will generate all values in the

random number sequence, though slightly reordered. It is also noted that for this design to

work, several values must be pre-initialized before execution begins. We will describe the

initialized algorithms in the following sections.

www.manaraa.com

 25

Table 6. Look Ahead Approach on {17,5} PALFG

Iteration Stage1 Stage2 Number Selected

Initialize -- 1X = 1X + 13X

Initialize -- 1533 XXX +=

0 0X = 0X + 12X 055 XXX +=
0X

1 1422 XXX += 277 XXX += 2X

2 1644 XXX += 499 XXX += 4X

3 166 XXX += 61111 XXX += 6X

4 388 XXX += 81313 XXX += 8X

5 51010 XXX += 101515 XXX += 10X

6 71212 XXX += 1200 XXX += 12X

7 91414 XXX += 1422 XXX += 14X

8 111616 XXX += 1644 XXX += 16X

9 1311 XXX += 166 XXX += 1X

www.manaraa.com

 26

Table 6 Continued

Iteration Stage1 Stage2 Number Selected

10 1533 XXX += 388 XXX += 3X

11 055 XXX += 51010 XXX += 5X

12 277 XXX += 71212 XXX += 7X

13 499 XXX += 91414 XXX += 9X

14 61111 XXX += 111616 XXX += 11X

15
81313 XXX += 1X = 1X + 13X 13X

16 101515 XXX += 1533 XXX += 15X

www.manaraa.com

 27

Figure 3. ALFG Schematic Design, k odd

There is one detail that has not been described yet. The ALFG design presented in

Figure 3 is only valid for sets of parameters l and k where k is odd. The oddness of k

conveniently arranges for data dependencies to always occur in the second stage. For

generators such as the {31,6}, where k is even, the situation is reversed and the

dependencies all occur in the first stage. This is evident in the list of memory reads for the

{31, 6}, Table 7. In iteration 0, we update the value 0X , but 0X is needed again in

iteration 3, stage 1. This means that we cannot cascade two steps as before to remove the

dependency problem. However, we can arrange stage 2 to take advantage of the value read

from XB during stage 1. Thus, iteration 0, the value 25X is used to update 0X in stage 1

while 25X itself is simultaneously updated in stage 2. The updated value 25X is then

available the next time it is needed (iteration 28). The ALFG schematic design for even k

is presented in Figure 4. To ensure that updated values are available from the appropriate

resources when needed, the ouput A1 is written back to XB. A2 is simultaneously written

back to both XA and XC. Thus, we can maintain a pattern of data flow similar to that of

the even k design.

www.manaraa.com

 28

Table 7. Look Ahead Approach on {31,6} PALFG

Iteration Stage1 Stage2 Number Selected

Initialize -- 1X = 1X + 26X

Initialize -- 2833 XXX +=

Initialize -- 3055 XXX +=

Initialize -- 177 XXX +=

Initialize -- 399 XXX +=

Initialize -- 51111 XXX +=

Initialize -- 71313 XXX +=

Initialize -- 91515 XXX +=

Initialize -- 111717 XXX +=

Initialize -- 131919 XXX +=

Initialize -- 152121 XXX +=

Initialize -- 172323 XXX +=

www.manaraa.com

 29

Table 7 Continued

Iteration Stage1 Stage2 Number Selected

1 2500 XXX += 192525 XXX += 0X

2 2722 XXX += 212727 XXX += 2X

3 2944 XXX += 232929 XXX += 4X

4 066 XXX += 2500 XXX += 6X

 . .

 . .

26 152121 XXX += 172222 XXX += 21X

27
172323 XXX += 24X = 24X + 19X 23X

28 192525 XXX += 212626 XXX += 25X

29 212727 XXX += 232828 XXX += 27X

30 232929 XXX += 253030 XXX += 29X

www.manaraa.com

 30

Figure 4.ALFG Schematic design, k even

A completely general PALFG implementation would necessarily employ circuits for both

cases, k even and odd, to be able to handle all SPRNG parameter sets.

3.6 Seed Initialization Algorithm for the ALFG design

First, let’s assume that the original l seeds obtained from SPRNG Library algorithms

are given. Also assume that the l seeds are numbered from 0 to 1−l in order. Given two

design schemes for even k and odd k, the seed initialization algorithms are only slightly

different. To simplify the description, the seeds numbered for odd k from 0 to n need to

be calculated in the seed initialization algorithm using formula mii XXX += , where

() lklim mod−+= and ni ≤≤0

For even k ALFG unit, 2−−= kln ;

For odd k ALFG unit, 2−= kn ;

Using the seed initialization algorithm, seeds will then be calculated to initialize the

PALFG cores.

www.manaraa.com

 31

3.7 PALFG Interface Design

The PALFG design supports all the parameter sets from SPRNG. But the specific

random number generator is selected based on the parameters. An interface for the PALFG

module is employed when the PALFG module is embedded into an application. Figure 5

shows the general interface design for the PALFG.

In Figure 5, we can see that PALFG provides a set of input signals for external

devices to control it. The external device gives high-level commands to the module and

supplies the necessary PALFG inputs such as l, k and initial seed array. Buffering the

commands and data sets is used to resolve synchronization issues between the external

device and PALFG module. The dual port RAMs and registers are addressable by the

external device so that communication between PALFG and external device is via shared

dual port RAMs and registers.

Figure 5. PALFG Interface Scheme

www.manaraa.com

 32

4. SPRNG Implementation
Following the design description, the implementation is presented in this chapter

rather than the architecture specification. The implementation of three main modules

comprising the PALFG including the ALFG core, execution module, and controller are

detailed.

4.1 Overall PALFG Module

Both Odd-Odd PALFG and Odd-Even PALFG top-level architectures contain two

ALFG cores (X and Y), one execution core and one controller. The ALFG Block

implements the modified Additive Lagged Fibonacci random number generation algorithm

and generates initial pseudorandom numbers. The execution core maniupulates two ALFG

results to produce the final SPRNG pesudo random numbers. The controller provides a set

of control and status registers that allow an external device connected to it to initialize and

configure the PALFG. Figure 6 shows the architecture of the PALFG FPGA

implementation. VHDL code is included in Appendix I.

4.2 Controller Block

The Controller block interfaces directly to the external devices. It provides a set of

configuration and status registers to initialize and configure the PALFG FPGA.

The controller block contains a control state machine (Figure7) to handle

initialization steps and parameter set configuration. This block has three states:

initialization, polling the status, and output of random numbers. The block stays in an

initialization state while it waits for the two ALFG blocks to finish their initialization.

After initialization, the controller goes into the polling state. When the ALFG status is ‘1’,

then the control block will immediately start the execution block and then goes into the

output state.

www.manaraa.com

 33

Figure 6. PALFG overall Architecture

www.manaraa.com

 34

Figure 7. Controller State Machine

www.manaraa.com

 35

4.3 ALFG Block

Since the design architecture has been described in details in Chapter 3, we focus on

the implementation methods in this section. In order to achieve high performance, the

block takes advantage of parallelism and pipelining opportunities within the PALFG

algorithm. As can be seen in the pseudo code in Chapter 3, to calculate a new array

element nx the algorithm needs to access the state RAM array values nx , 1+nx , klnx −+

and klnx −++1 . It also needs to be able to write the updated values nx and 1+nx .

The algorithm is parallelized in the following ways:

z Use of dual port RAM. This allows the array to be read and written in parallel.

z Use of three copies of the RAM. This allows the state array to be read at three

separate locations in parallel.

The pipelining serves one main purpose: it allows the data manipulation to be broken

into smaller stages, which improves the performance. The algorithm is pipelined as four

stages in odd-odd PALFG and two stages in odd-even PALFG as these two design

architectures are different due to the data hazards discussed in Chapter 3. For odd-odd

PALFG, the pipeline steps are RD/WR, ALU, RD/WR, ALU. For odd-even PALFG, there

are only two stages: RD/WR and ALU.

The RAM array implementation is essential in this design. The RAM array is turned

into a circular buffer and the circular buffer is created by implementing the read and write

pointers as counters.

www.manaraa.com

 36

To accomplish the goal of general design for all parameter sets in SPRNG, the

following consideration should be taken. When the parameter l is small, three RAM arrays

(XA, XB and XC) can represent single memory resources. However, a single Block RAM

resource provides only about 18 kilobits of memory on Xilinx VirtexII Pro devices. If this

memory is used in a 36-bit wide by 512-bit long configuration, only parameter l values

less than 512 may be used for the 32-bit generator. Obviously, if we are interested in 64 or

128 bit random numbers or larger values of l (such as 1278), we need additional RAM

resources. We could extend the RAM sequentially by tacking on additional 18kb units.

However, we must be careful to avoid timing issues that occur when routing data to the

correct memory resources. This becomes more problematic with larger lags and greater bit

widths.

So a slightly different memory-partitioning scheme was designed as shown in Figure

8. BRAM resources in 9-bit by 2048-bit configurations are used in this scheme. 32-bit

values are then constructed by reading 9-bit simultaneously from each of four BRAM

resources. Memory writes are accomplished in a similar manner by splitting the incoming

32-bit value into 8 bit chunks. This approach limits l to 2048, but this is more than

sufficient for implementing all SPRNG ALFG generators. Using this approach, the bit

width can now be easily tuned from 32 bits to up to widths of 512 bits or more by simply

using additional BRAM units. For most generator parameters, this scheme requires

slightly more BRAM but garantees that the performance will be consistent and

independent of the chosen generator parameters or bit width.

www.manaraa.com

 37

Figure 8. Memory Arrangement

www.manaraa.com

 38

5. Results
The PALFG design was designed using VHDL and each module was tested step by

step. To verify the random number generated by the whole circuit identical to the SPRNG

library, test benches in VHDL and software test codes for both initial seeds and results

were implemented. Then the PALFG design was verified by pre-synthesis and post-layout

simulation. Finally, after placing and routing, the PALFG bit stream was downloaded to

the University Xilinx Program board (XUP) with Xilinx VirtexII Pro XC2VP30. The final

results verified the PALFG design and are identical to SPRNG Library. In the following

sections, the results, as well as verification methods, are presented.

5.1 Test Samples Generation

Although the SPRNG library provides the open source, it is not designed for the

hardware verification. It doesn’t provide specific functions to export seeds nor a golden

random number results. So one test software application containing an Additive

Lagged-Fibonacci random number generator core in SPRNG, was programmed to export

the recalculated seeds and random number results to the text files. After the parameters of

random number generators and the number of generators are chosen, corresponding seeds

are generated using SPRNG cores and written into one text file. Figure 9 is the software

interface. Source code is in Appendix II.

5.2 RTL Verification

Mentor ModelSim was used for function simulation. Test benches were applied to

verify the behavior of individual modules. A Graphic User Interface (GUI) is helpful and

easier for verification in this case because the results can be easily observed. The test

bench is developed to get the final results (random numbers) that are shown on the wave

window in ModelSim.

www.manaraa.com

 39

Figure 9. Software Interface

As the seeds and parameter sets of random number generators need to be set before

the hardware executes, the test bench was written to simulate an external device to transfer

the control signal and essential data. Considering that the circuit has to been verified for all

the eleven parameter sets, it is tedious and impractical to have 11 separate test benches.

Therefore a readfile module is included, which is responsible to read parameter sets and

input seeds from a text file. In the test procedure, the readfile component reads the first

two lines to set the parameters (l,k) and the rest of data as seeds input. After the seeds and

parameters are sent to the circuit, the circuit starts to generate random numbers and the

results then appear in the GUI. Figure 10 shows one of the simulation results. In the

figures, the values in wave windows highlighted in red circles are the random numbers

produced by the PALFG module. Through comparison with the golden results in Notepad

window, the circuit has been logically verified. All the simulation results are identical to

the golden ones.

www.manaraa.com

 40

Figure 10. ModleSim Simulation Results – {521,168}

5.3 Synthesis Results

The implementation was synthesized with Synplicity Synplify Pro targeting on

several Xilinx FPGA devices including Virtex-II Pro XC2VP50, Virtex-4 XC4VLX80 and

Spartan-3 XC3S200 FPGAs. The Virtex-II Pro XC2VP50 contains 23,616 slices that each

contains two storage elements (register bit) and two function generators (Look-Up Tables).

The Virtex-4 XC4VLX80 holds 35,840 slices. The Sparten-3 XC3S200 has 1920 slices.

The implementation results shown in the Table 8 demonstrates that the PALFG core is

general and portable for a range of FPGA devices. Note that the resource usage (in LUT)

is quite modest, demanding a miniscule fraction per generator(2%) when implemented on

FPGAs such as the Xilinx Virtex II Pro VP50 devices contained in the Cray XD-1.

Furthermore, from the table, this implementation yields high performance. The maximum

generation rate reaches 206MHz on Xilinx Virtex-4 chips.

www.manaraa.com

 41

Table 8. PALFG Source Usage and Performance

FPGA Devices. Slices Usage Rate (MRNS)

Virtex-II Pro XC2VP50 1100 2% 162.0
Virtex-4 XC4VLX80 1100 1.5% 206.0
Spartan-3 XC3S200 1100 57% 105.0

5.4 Post Synthesis Simulation

After synthesis, the design is again simulated. This post-synthesis simulation also

verifies that the design is translated correctly into a netlist. The post-synthesis simulation

timing results are more accurate than pre-synthesis as it includes logic delay information.

Figure 11 is one example. This random number generator is the {607, 334} PALFG.

Comparing the golden results with for parameter sets of random number generators, the

synthesized design is verified.

5.5 Placement and Routing (PAR)

Placement and Routing follows synthesis and simulation. PAR involves the process

of interconnecting other primitives within the slice to a matrix of wire segments,

programmable switches and routing resources within FPGAs. This implementation has

been placed and routed by the Xilinx ISE tool, fitting into the Xilinx VirtexII Pro

XC2VP50 device.

During the implement design procedure, the translate process first merges all of the

input netlists and design and outputs a Xilinx native generic database (NGD) file.

Secondly, the map process maps the logic defined by an NGD file into FPGA elements.

www.manaraa.com

 42

Figure 11. Post-Simulation –{607, 334}

The output design is a native circuit description (NCD) file that physically represents the

design mapped to the components in the Xilinx FPGA. Finally the place and route process

takes a mapped NCD file for bitstream generation. The final report in ISE demonstrates

that all signals have been completely routed

5.6 FPGA Implementations

SoC integrates all components of an electronic system into a single chip. Through the

bus from the embedded PowerPC microprocessor core on chip, all components are

connected and data can be routed directly between external interfaces and memory. Figure

12 shows the test platform. Through the bus, the parameter sets and seeds will be

transferred by the PowerPC microprocessor (IBM PPC405) and the results will be read

from addressable memory, forwarded to the RSR232, and finally shown on the host PC

hyper-terminal window so that the random numbers can been seen and made available for

testing.

www.manaraa.com

 43

Figure 12. FPGA Implementation Test Platform

The Xilinx University Program Board (XUP) was used in this FPGA implementation

verification. XUP board has one Xilinx VirtexII Pro XC2VP30 device, which contains

13,696 slices. Two PPC405 cores are on the chip. In this implementation, only one

PPC405 core is used, with its frequency configured as 300MHz. Both UART module and

PALFG module are attached to the OnChip peripheral bus (OPB), whose frequency is

100MHz. Given the general PALFG interface scheme (in Chapter 3), three addressable

registers and two 8KB on chip memory units are included as the temporary memory to

buffer the initial seeds or store the temporary results from the PLAFG core. C code was

compiled for the PPC405 to execute initialization, generation and read results of three

sequences.Following four implementation steps: synthesis, placement and routing,

generating bitstream, and downloading, the results are finally shown on the Windows

Hyperterminal software. All the 11 SPRNG PALFG parameter sets have been tested and

confirmed. The Figure 13 shows one example of the results. The experiment results

matches the golden results for each configuration. These tests demonstrate the design and

implementation of PALFG is correct.

www.manaraa.com

 44

Figure 13. FPGA Implementation Verification Results – {1279, 861}

5.7 Performance Summary

As verified for both RTL and FPGA implementation, the PALFG emulates the

SPRNG PALFG software correctly. The goal of the hardware PALFG implementation is

to speed up the performance. Therefore, based on the synthesis results and SPRNG

software execution performance, in Table 9, timing benchmarks for the SPRNG PALFG

software generator of various processor architectures are reported [1]. Results for all Intel

architectures are remarkably similar and produce around 50 million random numbers per

second (MRNS). Among all the processors, the AMD Opteron270 presents the best

performance, providing 83.3 MRNS. Comparing the 162 MRNS of our present Virtex II

Pro hardware implementation to the best performance of the Opteron 270, the design

provides about 2 times the throughput despite running at a clock speed 10 times slower.

www.manaraa.com

 45

Table 9. PALFG Timing Performance Comparisons[31]

Processor Clock Rate (MRNS)

Virtex-II Pro FPGA 162 MHz 162.0

Cray X1E 400 MHz 2.9

Intel Itanium2 1.5 GHz 45.7

IBM Power4+ 1.7 GHz 29.4

AMD Opteron 270 2.0 GHz 83.3

Intel Xeon 2.4 GHz 56.9

Intel Pentium D 2.8 GHz 52.6

In terms of efficiency, the implementation appears to be nearly 20 times more

efficient than the fastest software implementations. As the resources usage of the

implementations is small, users can easily boost the efficiency another order of magnitude

by placing multiple generators on one FPGA chip.

www.manaraa.com

 46

6. SPRNG Core Targeted on Supercomputer Cray XD1
As the PALFG development targets computational science on engineering

applications on the supercomputers, this chapter illustrates how to apply the PALFG core

to the Cray XD1. In the first two sections, the Cray XD1 architecture and necessary IP

cores are introduced. Then following the design template proposed by [1], the

implementation work of PALFG is specified in details. Simulation results and part of

synthesis results are shown in the last section.

6.1 Cray XD1 Architecture

The basic architecture unit of the Cray XD1 system is the Cray XD1 chassis. One

chassis contains twelve 64-bit AMD Opteron processors, twelve rapid array processors,

six application acceleration processors (FPGA) and a management processor[1]. In each

chassis, there are one to six compute blades. Each blade includes two 64-bit Opteron

processors, DDR SDRAM, a RapidArray processor and a connector for an expansion

module. The expansion module is the main module that fulfills the supercomputing

reconfigurable functions. The expansion module has an additional RapidArray processor,

one FPGA, four QDRII SRAMs for the FPGA and a programmable clock source for the

FPGA as shown in Figure 14. The RapidArray processor provides the interface for the

FPGA to connect to the local Opteron processors. The QDR SRAMs provide high-speed

storage for the FPGA. The programmable clock enables the user to set the speed of the

FPGA. On the current Cray XD1, Xilinx VirtexII pro XC2VP50 FPGA is applied as the

application acceleration processor(AAP). XC2VP50 contains 53136 logic cells and 232

18Kb Block RAMS, which is high density and high performance system devices. Due to

its characteristics, users can program computationally intensive algorithms on the FPGA.

www.manaraa.com

 47

Figure 14. RapidArray Transport Module Interface [33]

www.manaraa.com

 48

6.2 Cray RapidArray Transport IP Core

The RapidArray Transport core interface, which provides the RapidArray fabric

interface to an FPGA design, plays an extremely important role in the Cray XD1 FPGA

development. The functionality of this IP core is to initiate and process responses for read

and write transactions across the fabric. Two interfaces are given to this core: fabric

request and user request. The fabric request interface issues read and write requests to the

user logic. The user request processes read and write requests from the user logic. The

maximum speed of the RT interface reaches 200 MHz. Figure 14 illustrates the Cray XD1

RT Interface.

6.3 Cray XD1 Design Template

The Cray XD1 development process follows the general FPGA design flows: HDL,

Synthesis, Simulation and Implementation. After implementation, the final output is an

FPGA binary file that contains the configuration bit stream for a specific Xilinx device.

The file is then converted to a Cray proprietary format file (design.bin.ufp). Finally, the

new created file can be downloaded to the FPGA AAP.

The Cray FPGA Development Document [33] provides a design template structure for

the users to follow as show in Figure 15. The top-level VHDL file forms a wrapper that

combines several logic components. Two of the components are the required logic cores

for connecting to the RapidArray processor and to the QDRII SRAMs. A third component

generates the user-programmable clock. The fourth component is the user application

component that can be written by users. This template provides a flexible and easy method

for users to port their IP cores to the Cray XD1. The primary requirement is that the user

logic component should have the required interface signals to the others.

www.manaraa.com

 49

Figure 15. FPGA Organization in Cray XD1 [33]

6.4 SPRNG Interface Implementation Targeted on Cray XD1

Following the design template structure, we placed the SPRNG core and the

interfaces in the user_app block. Since the SPRNG core has been already generated, the

work on Cray XD1 is to develop a user interface and provide the required interface signals.

As mentioned in the previous chapters, to generate random number, the PALFG core

needs to accept parameter sets and seed values. In the Cray XD1 application, these values

are transferred through RappidArray processor and need to be stored in the buffer. Thus

how to instantiate the RT core interface, how to make internal memory addressable, and

how to interface to the PALFG module are essential issues in this development. Since

QDR is not necessary in this application, the QDR support is excluded.

6.4.1 Operational Scenario

To the node processor, the FPGA appears to be mapped in its virtual address space.

Registers and BRAMs in the FPGA both have a corresponding virtual address space

through which the node processor can be addressed. When the node processor accesses the

www.manaraa.com

 50

address space allocated for FPGA, the requests will be sent through the HyperTransport

bus and issued to the RapidArray processor. Then the RapidArray processor will send the

requests to the FPGA through the RapidArray Transport (RT) Interface IP core. Given

different virtual addresses, the requests may be forwarded to the registers that set the

control signals or parameter sets of SPRNG to the PALFG. The requests may also be sent

to the internal FPGA BRAMs to initialize the seed arrays or read the random numbers

from them. To the accelerated FPGA, after the FPGA receives the requests from the RT, it

will acknowledge the request through the RT. Finally the node processor will receive the

response from the HyperTransport bus and continue its execution. Figure 16 shows the

logical view of this scenario.

6.4.2 User Application Block

The user block contains four sub blocks: the RT Client block, Register Interface

block, RAM Interface block, and the PALFG block (Figure 17). The RT client block is an

instance of the RT core and is responsible for acknowledging a fabric request, forwarding

the request to the correct sub-block, and polling any required response.

Figure 16. Operational Scenario in Cray XD1 [34]

www.manaraa.com

 51

Figure 17. The Application Block Shceme

www.manaraa.com

 52

To fulfill the functionality, the RT client block executes a large state machine that controls

the responses to the fabric request interface. The RT client has 5 states: idle, rd_stall,

wr_stall, wr and rd. Figure 18 illustrates the state transform [34]. The register interface

block provides a set of writable processor interface registers. The registers are used to

transfer the control commands and parameter sets from the RappidArray processor. These

registers are addressable so that the programmer can control the PALFG by setting the

values in register. The Block RAM Interface block (Figure 19) provides read and write

access for a processor to 16 Kbytes of internal Xilinx Block RAM. The software program

running on the Opteron processor can write the seeds values directly into the block RAM

and read the random number results from it. The Block RAM Interface consists of some

simple RAM control logic and a set of eight Xilinx Block RAMs. Figure 20 shows the

logic block diagram[2].

6.4.3 Memory Mapping

The accelerated FPGAs’ address region is 128 MB in the processors virtual address

space. In this application, one 16 KB BRAM and three registers in the FPGA are mapped

as the following virtual address so that the host node can access either of them (Table 10).

6.4.4 RTL Simulation

The application is simulated at a functional level using a test bench in VHDL. The

test bench instantiates the PALFG_IF, BRAM_IF and Reg_IF three block modules. First

the test module writes seeds, parameter sets and signals separately to the BRAM_IF and

Reg_IF blocks. Then through the control signals from REG_IF block, the PALFG_IF start

to generate random numbers and write results back to the BRAM_IF block. The

simulation results verify that the identical random numbers to SPRNG are written to the

memory that can be accessed by host node. Due to the synthesis debug issues and limited

time, the implementation of PALFG on Cray XD1 is not complete.

www.manaraa.com

 53

Figure 18. RapidArray Transport Client State Machine [34]

Figure 19. Block RAM Interface Block Diagram [34]

www.manaraa.com

 54

Figure 20. PALFG Interface Block Diagram

Table 10. XUP Memory Mapping

Offset Size (Bytes) Region Type Description

0x00000000-

0x00003FFF

16K Block RAM Internal Xilinx Block BRAM

0x40000010 8 Register 1 User State Control Command

0x40000018 8 Register 2 Set Parameter L

0x40000020 8 Register 3 Set Parameter K

www.manaraa.com

 55

7. Conclusion
This work leads the way to the first hardware-based implementation of SPRNG for

the scientific computing speedup purpose. This implementation provides identical results

to the SPRNG’s PALFG and provides the flexibility in the user environments. Due to its

fast generation speed and friendly interface for users, this uniform random number

generator is being targeted as an open core for parallel scientific computing.

7.1 Summary

There is always a clear and urgent need for speedup in parallel scientific computing.

Due to the occurrence of reconfigurable supercomputing, hardware and software

co-implementation in supercomputing attracts more and more attention in this parallel

scientific computing area. A FPGA design and implementation of the SPRNG’s PALFG is

presented with consideration of a number of tradeoffs: high throughput and flexibility.

First, given different cases of the SPRNG’s PALFG, two flexible designs were

developed for all the parameter sets of PALFG: Odd-Even PALFG and Odd-Odd PALFG.

These two designs implement the PALFG algorithm by setting the parameter sets and each

of the designs includes two ALFG modules, controller blocks and execution modules. The

ALFG modules contain three basic blocks -- RAM arrays. The RAM arrays are

implemented to be the circular buffers. Each RAM array is composed of four 9-bit by

2048-bit BRAMs so that it makes the architecture support all the parameter sets of the

PALFG only if l is less than 2048. Furthermore, a friendly interface architecture was

presented for users to combine the PALFG module with other external devices.

Second, verification was performed throughout all the design. Each component in the

PALFG was individually tested before being integrated together into PALFG. A prototype

was implemented in software. Comparison with the golden results that the prototype

www.manaraa.com

 56

produces, the PALFG module was verified using simulation and FPGA implementation.

The implementation passed all the verification tests with identical results to SPRNG.

Third, the PALFG implementation was targeted on the Cray XD1 supercomputer. A

general user block for PALFG applied into Cray XD1 is presented. A user block in the

FPGA for Cray XD1 was implemented using VHDL. This block contains RappidArray

Transport client block, Register interface block, RAM interface block and the PALFG

block. This user block passed the RTL simulation. Due to the time limitation, the final

PALFG implementation hasn’t been executed on CrayXD1.

7.2 Future Work

As mentioned above that the final PALFG Cray XD1 implementation is not complete,

so the first future work is to make the PALFG work on the Cray XD1. Since the

architecture, the VHDL codes and C codes for Cray XD1 are complete, it won’t take long

time to fulfill this work in the future.

Several types of random number generators are provided in the SPRNG library such

as combined Multiple Recursive Generator, 48-bit and 64-bit linear congruential

generators, and Prime Modulus Linear Congruential Generator. In this thesis, only the

PALFG was designed and implemented as the first try to verify the feasibility of the

SPRNG library in hardware implementation. So in the future, more parallel random

number generators in SPRNG can be implemented for more parallel computing

applications.

A general user block for applying PALFG into Cray XD1 is presented. More efficient

modules can be adapted to this user block such as double buffering to increase the

execution speed of the user block to reach the maximum speed of the PALFG.

As the Gaussian distributed random generator is also widely used in parallel scientific

computing, we also can try to implement a Gaussian distributed random number generator

based on the PALFG’s uniform random number generator.

www.manaraa.com

 57

List of References

www.manaraa.com

 58

[1] Michael Mascagni, Ashok Srinivasan, “Algorithm 806: SPRNG: a scalable library for
pseudorandom number generation”, ACM Transactions on Mathematical Software
(TOMS),Vol 26 Issue 3, Sep 2000

[2] Simka, M; Drutarovsky, M; Fischer, V; Fayolle,J “ Model of a true random number
generator aimed at cryptographic applications”, Circuits and Systems, 2006

[3] N. C. Metropolis and S. M. Ulam, “The Monte-Carlo method,” J. Am.Stat. Assoc., vol.
44, p. 335, 1949.

[4] H. Zaidi and G. Sgouros, Eds., “Therapeutic Applications of Monte CarloCalculations
in Nuclear Medicine”, ser. Series in Medical Physics and Biomedical Engineering.
Institute of Physics, 2002, vol. 24.

[5] P. Glasserman, “Monte Carlo Methods in Financial Engineering”, ser.Stochastic
Modelling and Applied Probability. Springer, 2003, vol. 53.

[6] Melissa C.Smith and Gregory D.Peterson, “Parallel Application Performance on
Shared High Performance Reconfigurable Computing Resources”, Performance
Evaluation. 60(1-4): 107-125, 2005

[7] Junqing Sun, Gregory D. Peterson. "Effective Execution Time Estimation for
Heterogeneous Parallel Computing" Parallel and Distributed Computing Systems, San
Francisco, California, USA, Sep, 2006

[8] Maya B and Pau. S.graham, “Reconfigurable Supercomputing”, Springer, 2005

[9] D.Lund, V.Barekos, and B.Honary, “Convolutional decoding for reconfigurable
mobile systems”, IEE Conference Publications (2001), 297 –301

[10] M.Kim, K.Ichige, and H.Arai, “Design of Jacobi EVD processor based on CORDIC
for DOA estimation with MUSIC algorithm”, IEICE Transactions on Communications
E85/B (2002;2003), no.12, 2648 -55

[11]Scott.E Fields, “Hardware Design and Implementation of Role-based Cryptography”,
The University of Tennessee, Knoxville, Dec 2005

www.manaraa.com

 59

[12] Alirez Hodjat and Ingrid Verbauwhede, “A 21.54 gbits/s fully pipelined AES
processor on FPGA”, Preceedings of IEEE Symposium on FPGAs for custom
computing machines (Napa, CA) (J.M.Arnold and K.L.Pocek, eds), April 2004

[13] Tripp, J.L; hanson, A.A; Gokhale,M; Mortveit, H, “Partitioning Hardware and
Software for Reconfigurable supercomputing applications: A case study “,
Supercomputing 2005, Proceedings of the ACM/IEEE SC2005 Conference 12-18,
Nov.2005 27-27

[14] Barrett, C. L., Beckman, R. J., Berkbigler, K. P., Bisset, K. R., Bush, B. W.,
Campbell, K., Eubank, S., Henson,K. M., Hurford, J. M., Kubicek, D. A., Marathe, M.
V., Romero, P. R., Smith, J. P., Smith, L. L., Stretz, P. E., Thayer, G. L.,
“ Transportation Analysis Simulation System (TRANSIMS)”, portland study reports.

[15] Gregory Dean Peterson, “Parallel Application Performance on Shared, Heterogeneous
Workstations”, Washington University, St.Louis, MO, 1994

[16] [online] http://en.wikipedia.org/wiki/Linear_feedback_shift_register

[17] Peter Martin, “An Analysis of Random Number Generators for a Hardware
Implementation of Genetic Programming using FPGAs and Handel-C “, J.Genetic
Programming and Evolvable Machines, 317-343, Dec. 2001

[18] Jason Stredwick, “Random Number Generators In Use”, MSU 2004, [online]
http://www.jasonstredwick.net/Data/rng.ppt

[19] K.H.Tsoi, K.H.Leung and P.H.W.Leong, “ Compact FPGA-based True and
pseudorandom number generators”, Proceedings of the 11th Annual IEEE Symposium
on Field-Programmable Custon Computing Machines, 2003

[20] Matti tommiska and Jarkko Vuori, “Hardware implementation of GA”, Proceedings
of the Second Nordic Worshop on Genetic Algorithms and their applications (2NWGA),
Vaasa, Finland, 1996

[21]Makoto Matsumto and Takuji Nishimura, “ Mersenne Twister : A 623-dimensionally
equidistributed uniform pseudorandom number generator, “ ACM Transactions on
Modeling and computer Simulation, vol 8, no.1 pp.3-30 January 1998

[22] “Cray XD1 Mersenne Twister Acceleraotr (MTA) FPGA design”, Cray Inc 2005

www.manaraa.com

 60

[23] Alexander S.Pasciak and John R.Rord “A New High Speed Solution for the
Evaluation of Monte Carlo Radiation Transport Computations”, Nuclear Science, IEEE
Transactions on Vol 53, Issue 2, April 2006

[24] M.Mascagni, Parallel Linear Congruenial Generators with Prime Moduli, Parallel
Computing, 24(1998) 923-936

[25] Zhou,M; Mascagni, M. The cycle server: a Web platform for unning parallel Monte
Carlo applications on a heterogenerous Condor pool of workstations”, Parallel
Processing, 2000 International Workshops on 21-24 Agu.2000 Pages: 111-118

[26] Dewaraja, .K; Ljungberg, M; Majumdar, A; Bose, A,; Koral, K.F; “A Parallel Monte
Carlo code for planar and SPEC imageing: implementation, verification and
applicationsin I SPECT”, Nuclear Science Symposium Conference Record, 2000 IEEE
Volume 3, 15-20 Oct 2000 Pages :20/30- 20/34

[27] [online] http://en.wikipedia.org/wiki/Diehard_tests

[28] [online] http://random.com.hr/products/random/Diehard.html

[29] Johnson B.C. “Radix-b extensions to some common empirical tests for pseudorandom
number generators”. ACM Transactions on Modelling and Computer Simulation, 6(4):
261-273, 1996

[30] Knuth D.E 1997 “The Art of Computer Programming”, Volume 2 Seminumerical
Algorithms. 3rd ed. Addison-Wesley Longman Publ. Co., Inc., Reading, MA.

[31] Yu Bi, Gregory.D.Peterson, G.Lee.Warren, Robert J.Harrison, “A Reconfigurable
Supercomputing Library for Accelerated Parallel Lagged-Fibonacci Pseudorandom
Number Generation”, Supercomputing Conference, Tempa, 2006

[32] Yu.Bi, Gregory.D.Peterson, G.L.Warren, and R.J.Harrison, “Hardware acceleration
of parallel lagged-Fibonacci pseudo random number generation,” Intl Conf. on
Engineering of Reconfigurable Systems and Algorithms. June, 2006

[33] Cray Inc. “Cray XD1 FPGA Development”

[34] Cray Inc. “Cray XD1 Hello World FPGA Design”

www.manaraa.com

 61

Appendices

www.manaraa.com

 62

Appendix I-- Main PALFG VHDL Codes

www.manaraa.com

 63

1. PALFG Top Level VHDL Codes—K= EVEN

/**
Name of code: MLFG.VHD

Purpose of code: Modified PLFG K=Even

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

www.manaraa.com

 64

entity MLFG is

 port(clk : in std_logic;
 reset: in std_logic;
 MLFGcontinue: in std_logic;
 length: in std_logic_vector(10 downto 0); -- for example 31, 5, length=30;
 k: in std_logic_vector(10 downto 0);
 Init_Start: in std_logic_vector(1 downto 0);
 Seeds_odd: in std_logic_vector(31 downto 0);
 Seeds_even: in std_logic_vector(31 downto 0);
 Data_valid: out std_logic;
 RN: out std_logic_vector(31 downto 0)
);
end MLFG;

architecture a of MLFG is

signal R0 : std_logic_vector(31 downto 0);
signal R1 : std_logic_vector(31 downto 0);
signal R0_valid: std_logic;
signal R1_valid: std_logic;
signal sRN: std_logic_vector(31 downto 0);
signal state: std_logic_vector(1 downto 0);

component MLFGcore

 port(clk : in std_logic;
 reset: in std_logic;
 continue: in std_logic;
 length: in std_logic_vector(10 downto 0);
 k: in std_logic_vector(10 downto 0);
 Init_Start: in std_logic_vector(1 downto 0);
 Seeds: in std_logic_vector(31 downto 0);
 Data_valid: out std_logic;
 Data: out std_logic_vector(31 downto 0)
);
end component;

www.manaraa.com

 65

component MLFGExecute

 port(clk : in std_logic;
 Adder_odd: in std_logic_vector(31 downto 0);
 Adder_even: in std_logic_vector(31 downto 0);
 RN: out std_logic_vector(31 downto 0)
);
end component;

begin

MLFG_even: MLFGcore port map
 (
 clk => clk,
 reset => reset,
 continue => MLFGcontinue,
 length => length,
 k => k,
 Init_Start => Init_Start,
 Seeds => Seeds_even,
 Data_valid => R0_valid,
 Data => R0
);

MLFG_odd: MLFGcore port map
 (
 clk => clk,
 reset => reset,
 continue => MLFGcontinue,
 length => length,
 k => k,
 Init_Start => Init_Start,
 Seeds => seeds_odd,
 Data_valid => R1_valid,
 Data => R1
);
MLFG_Execute: MLFGExecute port map

www.manaraa.com

 66

 (
 clk => clk,
 Adder_odd => R1,
 Adder_even => R0,
 RN => sRN
);

process(clk)
 begin
 if reset = '0' then
 state<="00";
 data_valid <='0';
 else
 if clk' event and clk ='1' then

 if MLFGcontinue = '1' then
 case state is
 when "00" =>
 if (R0_valid = '1') then
 if(R1_valid = '1') then
 state <="01";
 end if;
 else
 state <="00";
 end if;
 when "01" =>
 RN(30 downto 0)<= sRN(31 downto 1);
 state <="10";
 when "10" =>
 Data_valid <='1';
 RN(30 downto 0) <=sRN(31 downto 1);
 when others =>

 null;
 end case;

 end if;

www.manaraa.com

 67

 end if;
 end if;
end process;
RN(31) <= '0';
end;

www.manaraa.com

 68

2. PALFG Kernel VHDL Codes – K= EVEN

/**
Name of code: MLFGcore.VHD

Purpose of code: Modified PLFG kernel core K=Even

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

www.manaraa.com

 69

entity MLFGcore is

 port(clk : in std_logic;
 reset: in std_logic;
 continue: in std_logic;
 length: in std_logic_vector (10 downto 0); -- for example 31, 5 length =
30;
 k: in std_logic_vector(10 downto 0);
 Init_Start: in std_logic_vector(1 downto 0);
 Seeds: in std_logic_vector(31 downto 0);
 Data_valid: out std_logic;
 Data: out std_logic_vector(31 downto 0)
);
end MLFGcore;

architecture a of MLFGcore is
signal Raddr_1 : std_logic_vector(10 downto 0);
signal Raddr_2: std_logic_vector(10 downto 0);
signal Raddr_3: std_logic_vector(10 downto 0);
signal Waddr_1: std_logic_vector(10 downto 0);
signal Waddr_2: std_logic_vector(10 downto 0);
signal tempRaddr_1: std_logic_vector(10 downto 0);
signal tempRaddr_2: std_logic_vector(10 downto 0);

signal Rdata_1: std_logic_vector(31 downto 0);
signal Rdata_2: std_logic_vector(31 downto 0);
signal Rdata_3: std_logic_vector(31 downto 0);
signal Wdata_1: std_logic_vector(31 downto 0);
signal Wdata_2: std_logic_vector(31 downto 0);

signal Raddr_en : std_logic;

signal Initi_Done: std_logic;
signal initivalue_done: std_logic;
signal initvalue_1:std_logic_vector(10 downto 0);
signal initvalue_2: std_logic_vector(10 downto 0);
signal initvalue_3: std_logic_vector(10 downto 0);

www.manaraa.com

 70

signal halflength: std_logic_vector(10 downto 0);

signal Data_in_1: std_logic_vector(31 downto 0);
signal Data_in_2 : std_logic_vector(31 downto 0);

signal state: std_logic_vector(2 downto 0);
signal counterlength : std_logic_vector(10 downto 0);
component First is
 port(clk : in std_logic;
 reset: in std_logic;
 continue: in std_logic;
 Init_Start: in std_logic_vector (1 downto 0);
 Raddr_1: in std_logic_vector(10 downto 0);
 Raddr_2: in std_logic_vector(10 downto 0);
 Raddr_3: in std_logic_vector(10 downto 0);
 Waddr_1: in std_logic_vector(10 downto 0);
 Waddr_2: in std_logic_vector(10 downto 0);
 Data_in_1: in std_logic_vector(31 downto 0);
 Data_in_2: in std_logic_vector(31 downto 0);
 Data_out_1: out std_logic_vector(31 downto 0);
 Data_out_2: out std_logic_vector(31 downto 0);
 Data_out_3: out std_logic_vector(31 downto 0);
 Initi_Done: out std_logic;
 initivalue_done: out std_logic

);
end component;

component Second is
 port(

 clk: in std_logic;
 Adder_1: in std_logic_vector(31 downto 0);
 Adder_2: in std_logic_vector(31 downto 0);
 Adder_3: in std_logic_vector(31 downto 0);
 Sum_1: out std_logic_vector(31 downto 0);
 Sum_2: out std_logic_vector(31 downto 0)
);
end component;

www.manaraa.com

 71

component SetRaddr
 port(clk : in std_logic;
 reset: in std_logic;
 initvalue_1: in std_logic_vector(10 downto 0);
 initvalue_2: in std_logic_vector(10 downto 0);
 initvalue_3: in std_logic_vector(10 downto 0);
 length: in std_logic_vector(10 downto 0);
 Raddr_1_en: in std_logic;
 Raddr_2_en: in std_logic;
 Raddr_3_en: in std_logic;
 Raddr_1: out std_logic_vector(10 downto 0);
 Raddr_2: out std_logic_vector(10 downto 0);
 Raddr_3: out std_logic_vector(10 downto 0)
);
end component;

component SetWrite

 port(clk : in std_logic;
 Raddr_1: in std_logic_vector(10 downto 0);
 Raddr_2: in std_logic_vector(10 downto 0);
 Waddr_1: out std_logic_vector(10 downto 0);
 Waddr_2: out std_logic_vector(10 downto 0)
);
end component;

begin
FirstStep: First
port map(
 clk => clk,
 reset => reset,
 continue => continue,
 Init_Start => Init_Start,
 Raddr_1 => Raddr_1,

www.manaraa.com

 72

 Raddr_2 => Raddr_2,
 Raddr_3 => Raddr_3,
 Waddr_1 => Waddr_1,
 Waddr_2 => Waddr_2,
 Data_in_1 => Data_in_1,
 Data_in_2 => Data_in_2,
 Data_out_1 => Rdata_1,
 Data_out_2 => Rdata_2,
 Data_out_3 => Rdata_3,
 Initi_Done => Initi_Done,
 initivalue_done =>initivalue_done
);

SecondStep: Second
 port map(
 clk => clk,
 Adder_1 => Rdata_1,
 Adder_2 => Rdata_2,
 Adder_3 => Rdata_3,
 Sum_1 => Wdata_2,
 Sum_2 => Wdata_1
);

ReadAdrr: SetRaddr
 port map(clk => clk,
 reset => reset,
 initvalue_1=>initvalue_1,
 initvalue_2 => initvalue_2,
 initvalue_3=>initvalue_3,
 length => counterlength,
 Raddr_1_en => Raddr_en,
 Raddr_2_en => Raddr_en,
 Raddr_3_en => Raddr_en,
 Raddr_1 => Raddr_1,
 Raddr_2 => Raddr_2,

www.manaraa.com

 73

 Raddr_3 => Raddr_3
);

WriteAddr: SetWrite

 port map (clk => clk,
 Raddr_1 => tempRaddr_1,
 Raddr_2 => tempRaddr_2,
 Waddr_1 => Waddr_1,
 Waddr_2 => Waddr_2
);

WriteAddrDelay1clk: SetWrite
 port map (clk => clk,
 Raddr_1 => Raddr_1,
 Raddr_2 => Raddr_2,
 Waddr_1 => tempRaddr_2,
 Waddr_2 => tempRaddr_1
);

Data_in_1 <= Seeds when Init_Start = "00"
 else Wdata_1;
Data_in_2 <= Seeds when Init_Start = "00"
 else Wdata_2;

Data <= Wdata_2;

halflength(10) <= '0';

halflength(9 downto 0) <= length(10 downto 1);
counterlength <= length - 1 when initivalue_Done = '1'
 else "00000000000";

process (clk, reset)
begin
 if reset = '0' then
 state<="000";

www.manaraa.com

 74

 Raddr_en <= '0';
 Data_valid <= '0';
 else
 if clk' event and clk ='1' then

 if continue = '1' then
 case state is
 when "000" =>
 if initivalue_Done = '1' then
 state <="001";
 initvalue_1 <= (others =>'0');
 initvalue_2 <= length-k;
 if halflength > k then
 initvalue_3 <= length-k-k;
 else
 initvalue_3 <= length+length-k-k;
 end if;

 else

 state <="000";
 end if;
 when "001" =>
 if Initi_Done = '1' then
 state <="010";
 else
 state <="001";
 end if;
 when "010" =>
 Raddr_en <= '1';
 state <="011";

 when "011" =>
 state <= "100";

 when "100" =>

 state <= "100";
 Data_valid <='1';

www.manaraa.com

 75

 when others =>
 null;

 end case;
 end if;
 end if;
 end if;
end process;
end;

www.manaraa.com

 76

3. PALFG Top Level VHDL Codes—K= ODD

/**
Name of code: MLFG.VHD

Purpose of code: Modified PLFG K=Odd

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity MLFG is

www.manaraa.com

 77

 port(clk : in std_logic;
 reset: in std_logic;
 MLFGcontinue: in std_logic;
 length: in std_logic_vector(10 downto 0); -- for example {31, 6},
length=31, k= 6;
 k: in std_logic_vector(10 downto 0);
 Init_Start: in std_logic_vector(1 downto 0);
 Seeds_odd: in std_logic_vector(31 downto 0);
 Seeds_even: in std_logic_vector(31 downto 0);
 Data_valid: out std_logic;
 RN: out std_logic_vector(31 downto 0)
);
end MLFG;

architecture a of MLFG is

signal R0 : std_logic_vector(31 downto 0);
signal R1 : std_logic_vector(31 downto 0);
signal R0_valid: std_logic;
signal R1_valid: std_logic;
signal sRN: std_logic_vector(31 downto 0);
signal state: std_logic_vector(1 downto 0);

component MLFGcore

 port(clk : in std_logic;
 reset: in std_logic;
 continue: in std_logic;
 length: in std_logic_vector(10 downto 0);
 k: in std_logic_vector(10 downto 0);
 Init_Start: in std_logic_vector(1 downto 0);
 Seeds: in std_logic_vector(31 downto 0);
 Data_valid: out std_logic;
 Data: out std_logic_vector(31 downto 0)
);
end component;

component MLFGExecute

www.manaraa.com

 78

 port(clk : in std_logic;
 Adder_odd: in std_logic_vector(31 downto 0);
 Adder_even: in std_logic_vector(31 downto 0);
 RN: out std_logic_vector(31 downto 0)
);
end component;

begin

MLFG_even: MLFGcore port map
 (
 clk => clk,
 reset => reset,
 continue => MLFGcontinue,
 length => length,
 k => k,
 Init_Start => Init_Start,
 Seeds => Seeds_even,
 Data_valid => R0_valid,
 Data => R0
);

MLFG_odd: MLFGcore port map
 (
 clk => clk,
 reset => reset,
 continue => MLFGcontinue,
 length => length,
 k => k,
 Init_Start => Init_Start,
 Seeds => seeds_odd,
 Data_valid => R1_valid,
 Data => R1
);

www.manaraa.com

 79

MLFG_Execute: MLFGExecute port map
 (
 clk => clk,
 Adder_odd => R1,
 Adder_even => R0,
 RN => sRN
);

process(clk)
 begin
 if reset = '0' then
 state<="00";
 data_valid <='0';
 else
 if clk' event and clk ='1' then

 if MLFGcontinue = '1' then
 case state is
 when "00" =>
 if (R0_valid = '1') then
 if(R1_valid = '1') then
 state <="01";
 end if;
 else
 state <="00";
 end if;
 when "01" =>
 RN(30 downto 0)<= sRN(31 downto 1);
 state <="10";
 when "10" =>
 Data_valid <='1';
 RN(30 downto 0) <=sRN(31 downto 1);
 when others =>

 null;
 end case;

www.manaraa.com

 80

 end if;
 end if;
 end if;
end process;
RN(31) <= '0';
end;

www.manaraa.com

 81

4. PALFG Kernel VHDL Codes – K=ODD

/**
Name of code: MLFGcore.VHD

Purpose of code: Modified PLFG kernel core K=Even

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity MLFGcore is

www.manaraa.com

 82

 port(clk : in std_logic;
 reset: in std_logic;
 continue: in std_logic;
 length: in std_logic_vector (10 downto 0); -- for example 31, 5 length =
30;
 k: in std_logic_vector(10 downto 0);
 Init_Start: in std_logic_vector(1 downto 0);
 Seeds: in std_logic_vector(31 downto 0);
 Data_valid: out std_logic;
 Data: out std_logic_vector(31 downto 0)
);
end MLFGcore;

architecture a of MLFGcore is
signal Raddr_1 : std_logic_vector(10 downto 0);
signal Raddr_2: std_logic_vector(10 downto 0);
signal Raddr_3: std_logic_vector(10 downto 0);
signal Waddr_1: std_logic_vector(10 downto 0);

signal Waddr_3: std_logic_vector(10 downto 0);
signal tempRaddr_1: std_logic_vector(10 downto 0);

signal tempRaddr_3: std_logic_vector(10 downto 0);

signal Rdata_1: std_logic_vector(31 downto 0);
signal Rdata_2: std_logic_vector(31 downto 0);
signal Rdata_3: std_logic_vector(31 downto 0);
signal Wdata_1: std_logic_vector(31 downto 0);
signal Wdata_2: std_logic_vector(31 downto 0);
signal Wdata_3: std_logic_vector(31 downto 0);
signal Wdata_3_dly: std_logic_vector(31 downto 0);

signal Raddr_1_en : std_logic;
signal Raddr_2_en : std_logic;
signal Raddr_3_en : std_logic;
signal Write_en_1: std_logic;

www.manaraa.com

 83

signal Write_en_3: std_logic;

signal Initi_Done: std_logic;
signal Initi_Done_1: std_logic;
signal Initi_Done_3: std_logic;

signal initivalue_done_1: std_logic;
signal initivalue_done_3: std_logic;
signal initivalue_done: std_logic;

signal initvalue_1:std_logic_vector(10 downto 0);
signal initvalue_2: std_logic_vector(10 downto 0);
signal initvalue_3: std_logic_vector(10 downto 0);

signal Data_in_1: std_logic_vector(31 downto 0);
signal Data_in_2 : std_logic_vector(31 downto 0);

signal state: std_logic_vector(2 downto 0);
signal counterlength : std_logic_vector(10 downto 0);

component First is
 port(clk : in std_logic;
 reset: in std_logic;
 continue: in std_logic;
 Init_Start: in std_logic_vector(1 downto 0);
 Raddr_1: in std_logic_vector(10 downto 0);
 Raddr_2: in std_logic_vector(10 downto 0);
 Waddr_1: in std_logic_vector(10 downto 0);
 Data_in_1: in std_logic_vector(31 downto 0);
 write_en : in std_logic;
 Data_out_1: out std_logic_vector(31 downto 0);
 Data_out_2: out std_logic_vector(31 downto 0);
 Initi_Done: out std_logic;
 initivalue_done: out std_logic);
end component;

component Second is

www.manaraa.com

 84

 port(
 clk: in std_logic;
 Adder_1: in std_logic_vector(31 downto 0);
 Adder_2: in std_logic_vector(31 downto 0);
 Sum_1: out std_logic_vector(31 downto 0)
);
end component;

component Third is
 port(clk : in std_logic;
 reset: in std_logic;
 continue: in std_logic;
 Init_Start: in std_logic_vector(1 downto 0);
 Raddr_3: in std_logic_vector(10 downto 0);
 Waddr_3: in std_logic_vector(10 downto 0);
 Data_in_2: in std_logic_vector(31 downto 0);
 write_en : in std_logic;
 Data_out_3: out std_logic_vector(31 downto 0);
 Initi_Done: out std_logic;
 initivalue_done: out std_logic

);
end component;

component Fourth is
 port(
 clk: in std_logic;
 Adder_1: in std_logic_vector(31 downto 0);
 Adder_2: in std_logic_vector(31 downto 0);
 Sum: out std_logic_vector(31 downto 0)
);
end component;

component SetRaddr
 port(clk : in std_logic;
 reset: in std_logic;
 initvalue_1: in std_logic_vector(10 downto 0);
 initvalue_2: in std_logic_vector(10 downto 0);
 initvalue_3: in std_logic_vector(10 downto 0);

www.manaraa.com

 85

 length: in std_logic_vector(10 downto 0); -- for example 31, 6, l = 30, k =
25;
 Raddr_1_en: in std_logic;
 Raddr_2_en: in std_logic;
 Raddr_3_en: in std_logic;
 Raddr_1: out std_logic_vector(10 downto 0);
 Raddr_2: out std_logic_vector(10 downto 0);
 Raddr_3: out std_logic_vector(10 downto 0)
);

end component;

component SetWrite

 port(clk : in std_logic;
 Raddr_1: in std_logic_vector(10 downto 0);
 Raddr_3: in std_logic_vector(10 downto 0);
 Waddr_1: out std_logic_vector(10 downto 0);
 Waddr_3: out std_logic_vector(10 downto 0)
);

end component;

begin
FirstStep: First
port map(
 clk => clk,
 reset => reset,
 continue => continue,
 Init_Start => Init_Start,
 Raddr_1 => Raddr_1,
 Raddr_2 => Raddr_2,
 Waddr_1 => Waddr_1,
 Data_in_1 => Data_in_1,
 write_en => write_en_1,
 Data_out_1 => Rdata_1,
 Data_out_2 => Rdata_2,
 Initi_Done => Initi_Done_1,

www.manaraa.com

 86

 initivalue_done => initivalue_done_1
);

SecondStep: Second
 port map(
 clk => clk,
 Adder_1 => Rdata_1,
 Adder_2 => Rdata_2,
 Sum_1 => Wdata_3
);

ThirdStep: Third
 port map (clk => clk,
 reset => reset,
 continue => continue,
 Init_Start => Init_Start,
 Raddr_3 => Raddr_3,
 Waddr_3 => Waddr_3,
 Data_in_2 => Data_in_2,
 write_en => write_en_3,
 Data_out_3 => Rdata_3,
 Initi_Done => Initi_Done_3,
 initivalue_done => initivalue_done_3
);

FourthStep: Fourth
 port map(
 clk => clk,
 Adder_1 => Wdata_3_dly,
 Adder_2 => Rdata_3,
 Sum =>Wdata_1
);

ReadAdrr: SetRaddr
 port map(clk => clk,
 reset => reset,
 initvalue_1 => initvalue_1,
 initvalue_2 => initvalue_2,

www.manaraa.com

 87

 initvalue_3 => initvalue_3,
 length => counterlength,
 Raddr_1_en => Raddr_1_en,
 Raddr_2_en => Raddr_2_en,
 Raddr_3_en => Raddr_3_en,
 Raddr_1 => Raddr_1,
 Raddr_2 => Raddr_2,
 Raddr_3 => Raddr_3);

WriteAddr: SetWrite

 port map (clk => clk,
 Raddr_1 => tempRaddr_1,
 Raddr_3 => tempRaddr_3,
 Waddr_1 => Waddr_1,
 Waddr_3 => Waddr_3
);
WriteAddrDelay1clk: SetWrite
 port map (clk => clk,
 Raddr_1 => Raddr_1,
 Raddr_3 => Raddr_3,
 Waddr_1 => tempRaddr_3,
 Waddr_3 => tempRaddr_1
);
Data_in_1 <= Seeds when Init_Start = "00"
 else Wdata_1;
Data_in_2 <= Seeds when Init_Start = "00"
 else Wdata_3;
Data <= Wdata_3;
counterlength <= length - 1 when initivalue_Done = '1'
 else "00000000000";
initivalue_done <= initivalue_done_1 and initivalue_done_3;
Initi_Done <= Initi_Done_1 and Initi_Done_3;

process (clk, reset)
begin
 if reset = '0' then
 state<="000";
 Data_valid <= '0';

www.manaraa.com

 88

 Raddr_1_en <= '0';
 Raddr_2_en <= '0';
 Raddr_3_en <= '0';
 Write_en_1 <= '0';
 Write_en_3 <= '0';
 Data_valid <= '0';
 else
 if clk' event and clk ='1' then

 if continue = '1' then
 case state is
 when "000" =>
 if initivalue_Done = '1' then
 state <="001";
 initvalue_1 <= (others =>'0');
 initvalue_2 <= length-k;
 initvalue_3 <= k;
 else
 state <="000";
 end if;
 when "001" =>
 if Initi_Done = '1' then
 state <="010";
 else
 state <="001";
 end if;
 when "010" =>
 Raddr_1_en <= '1';
 Raddr_2_en <= '1';
 state <="011";
 when "011" =>
 state <= "100";
 when "100" =>
 write_en_3 <='1';
 Data_valid <='1';
 state <= "101";
 Raddr_3_en <= '1';
 when "101" =>
 state <= "110";

www.manaraa.com

 89

 write_en_1<='1';

 when "110" =>
 state <="110";
 when others =>
 null;
 end case;
 end if;
 end if;
 end if;
end process;
ack_delay: process(clk,reset)
begin
 if clk'event and clk ='1' then
 Wdata_3_dly <= Wdata_3;
 end if;
end process;
end;

www.manaraa.com

 90

Appendix II-- Test Random Numbers Generation Codes

www.manaraa.com

 91

1. Main PALFG TestBench File
/**
Name of code: PALFGTestBench.cpp

Purpose of code: Test Bench File

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/
#include "stdafx.h"

#include "SPRNGThread.h"

#include "ReadThread.h"
//#define GENERATORNUMBER 2

int _tmain(int argc, _TCHAR* argv[])

www.manaraa.com

 92

{

 int i;
 printf("\n Enter the number of Random Number Generators that you want\n");
 int GeneratorNumber=0;
 int parameter;
 scanf("%d", &GeneratorNumber);
 printf("\n Select the type of Random Number Generator as follows\n please type the
NO. from 0 to 10\n");
 printf("\n 0. {1279,861,1,233}\n 1. {17,5,1,10}\n 2. {31,6,1,2} \n 3. {55,24,1,11}\n 4.
{63,31,1,14}\n 5.{127,97,1,21}\n 6.{521,353,1,100}\n 7. {521,168,1,83}\n 8.
{607,334,1,166}\n 9. {607,273,1,105}\n 10. {1279,418,1,208}\n");
 scanf("%d",¶meter);

 CSPRNGThread *asprngtThreads;
 asprngtThreads = new CSPRNGThread[GeneratorNumber];
 CReadThread rtReadThread(asprngtThreads, GeneratorNumber);

 for (i=0;i<GeneratorNumber;i++)
 {
 asprngtThreads[i].SetID(i);
 asprngtThreads[i].SetNumRNG(GeneratorNumber);
 asprngtThreads[i].SetParam(parameter);
 }
 for (i=0; i<GeneratorNumber; i++)
 { asprngtThreads[i].CreateThread();
 }

 // general seed
 DWORD dwSeed = 0;

 for (i=0; i<GeneratorNumber; i++)
 {
 asprngtThreads[i].SetSeed(dwSeed);
 }

 rtReadThread.CreateThread();

www.manaraa.com

 93

 Sleep(1000);

 rtReadThread.Terminate();
 WaitForSingleObject(rtReadThread.m_hThread, INFINITE);

 // stop
 for (i=0; i<GeneratorNumber; i++)
 {
 asprngtThreads[i].StopGenerator();
 WaitForSingleObject(asprngtThreads[i].m_hThread, INFINITE);
 }
 return 0;
}

www.manaraa.com

 94

2. PALFG Object
/**
Name of code: PALFG.cpp

Purpose of code: PALFG Thread

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/
#if !defined(SPRNGTHREAD_H)
 #include "SPRNGThread.h"
#endif
#define GENERATORNUMBER 2
int error;
CSPRNGThread::CSPRNGThread()
 : m_iInitSeed(0), m_bContinue(true),m_RNFIFO(1000)
{
 m_hEventForSeed = CreateEvent(NULL, FALSE, FALSE, NULL);

www.manaraa.com

 95

 m_bAutoDelete = FALSE;
 m_Param = 0;
 m_bPause = false;
}
CSPRNGThread::~CSPRNGThread()
{
 CloseHandle(m_hEventForSeed);
}
void CSPRNGThread::SetID(int iID)
{
 m_iID = iID;
}
void CSPRNGThread::SetNumRNG(int iNumofRNG)
{
 m_iNumofRNG = iNumofRNG;
}
void CSPRNGThread::SetSeed(int iSeed)
{
 m_iInitSeed = iSeed;
 SetEvent(m_hEventForSeed);
}
void CSPRNGThread::StopGenerator()
{
 m_bContinue = false;
 SetEvent(m_hEventForSeed);
}
 BOOL CSPRNGThread::InitInstance()
{
 CWinThread::InitInstance();
 return TRUE;
}
int
CSPRNGThread::Run()
{
 WaitForSingleObject(m_hEventForSeed, INFINITE);
 if (!m_bContinue)
 return 0;
 m_iRNG = init_rng(m_iID,GENERATORNUMBER,m_iInitSeed,m_Param);
 while (m_bContinue)

www.manaraa.com

 96

 {
 Random();
 if (m_dwRN_z == 0x4cae3669)
 {
 error = 1;
 };
 WriteRNtoFIFO();
 while(m_RNFIFO.IsFull())
 {
 if (!m_bContinue)
 break;}
 }
 return 0;
}
void
CSPRNGThread::Random()
{
 m_dwRN_z = get_rn_int(m_iRNG);
}
void CSPRNGThread::WriteRNtoFIFO()
{
 m_RNFIFO.Put(m_dwRN_z);
}
void CSPRNGThread::SetParam(int param)
{
 m_Param=param;
}

www.manaraa.com

 97

3. PALFG Execution Function Files
/**
Name of code: PALFGfunc.cpp

Purpose of code: PALFG basic functions

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include "LFG.H"
#define INT_MOD_MASK 0xffffffff
#define INT_MASK ((unsigned)INT_MOD_MASK>>1)
#define BITS_IN_INT_GEN 32

www.manaraa.com

 98

#define MAX_BIT_INT (BITS_IN_INT_GEN-2)
#define INTX2_MASK ((1<<MAX_BIT_INT)-1)
#define GS0 0x372f05ac
#define RUNUP (2*BITS_IN_INT_GEN)

struct vstruct {
 int L;
 int K;
 int LSBS; /* number of least significant bits that are 1 */
 int first; /* the first seed whose LSB is 1 */
};

const struct vstruct valid[] = { {1279,861,1,233}, {17,5,1,10}, {31,6,1,2},
{55,24,1,11}, {63,31,1,14}, {127,97,1,21}, {521,353,1,100},
{521,168,1,83}, {607,334,1,166}, {607,273,1,105}, {1279,418,1,208}};

static int bitcnt(int x)

{
 unsigned i=0,y;

 for (y=(unsigned)x; y; y &= (y-1))
 i++;

 return(i);
}
static void advance_reg(int *reg_fill)

{
/* the register steps according to the primitive polynomial */
/* (64,4,3,1,0); each call steps register 64 times */
/* we use two words to represent the register to allow for integer */
/* size of 32 bits */

www.manaraa.com

 99

 const int mask = 0x1b;
 int adv_64[4][2];

 int i,new_fill[2];
 unsigned temp;

 adv_64[0][0] = 0xb0000000;
 adv_64[0][1] = 0x1b;
 adv_64[1][0] = 0x60000000;
 adv_64[1][1] = 0x2d;
 adv_64[2][0] = 0xc0000000;
 adv_64[2][1] = 0x5a;
 adv_64[3][0] = 0x80000000;
 adv_64[3][1] = 0xaf;
 new_fill[1] = new_fill[0] = 0;
 temp = mask<<27;

 for (i=27;i>=0;i--)
 {
 new_fill[0] = (new_fill[0]<<1) | (1&bitcnt(reg_fill[0]&temp));
 new_fill[1] = (new_fill[1]<<1) | (1&bitcnt(reg_fill[1]&temp));
 temp >>= 1;
 }

 for (i=28;i<32;i++)
 {
 temp = bitcnt(reg_fill[0]&(mask<<i));
 temp ^= bitcnt(reg_fill[1]&(mask>>(32-i)));
 new_fill[0] |= (1&temp)<<i;
 temp = bitcnt(reg_fill[0]&adv_64[i-28][0]);
 temp ^= bitcnt(reg_fill[1]&adv_64[i-28][1]);
 new_fill[1] |= (1&temp)<<i;
 }

 reg_fill[0] = new_fill[0];
 reg_fill[1] = new_fill[1];
}

www.manaraa.com

 100

static int get_fill(unsigned *n, unsigned *r, int param, unsigned seed)

{
 int i,j,k,temp[2], length;

 length = valid[param].L;

 temp[1] = temp[0] = n[0]^seed;
 if (!temp[0])
 temp[0] = GS0;

 advance_reg(temp);
 advance_reg(temp);

/* the first word in the generator is defined by the 31 LSBs of the */
/* node number
*/

 r[0] = (INT_MASK&n[0])<<1;
/* the generator is filled with the lower 31 bits of the shift */
/* register at each time, shifted up to make room for the bits */
/* defining the canonical form; the node number is XORed into */
/* the fill to make the generators unique */

 for (i=1;i<length-1;i++)
 {
 advance_reg(temp);
 r[i] = (INT_MASK&(temp[0]^n[i]))<<1;
 }
 r[length-1] = 0;
/* the canonical form for the LSB is instituted here */
 k = valid[param].first + valid[param].LSBS;

 for (j=valid[param].first;j<k;j++)
 r[j] |= 1;

 return(0);

www.manaraa.com

 101

}

static void si_double(unsigned *a, unsigned *b, int length)

{
 int i;

 a[length-2] = (INTX2_MASK&b[length-2])<<1;
 for (i=length-3;i>=0;i--)
 {
 if (b[i]&(1<<MAX_BIT_INT))
 a[i+1]++;
 a[i] = (INTX2_MASK&b[i])<<1;
 }
}

int get_rn_int(int *genptr)

/* returns value put into new position */
{
 unsigned new_val,*r0,*r1;
 int hptr,lptr,*hp = &((struct rngen *)genptr)->hptr;
 int lval, kval;
 int test1;

 lval = ((struct rngen *)genptr)->lval;
 kval = ((struct rngen *)genptr)->kval;
 r0 = ((struct rngen *)genptr)->r0;
 r1 = ((struct rngen *)genptr)->r1;
 hptr = *hp;
 lptr = hptr + kval;
 if (lptr>=lval) lptr -= lval;
/* INT_MOD_MASK causes arithmetic to be modular when integer size is */
/* different from generator modulus
 */
 if (r0[hptr] == 0x487d988a)
 {

www.manaraa.com

 102

 test1 = 0;
 }
 r0[hptr] = INT_MOD_MASK&(r0[hptr] + r0[lptr]);
 r1[hptr] = INT_MOD_MASK&(r1[hptr] + r1[lptr]);
 new_val = (r1[hptr]&(~1)) ^ (r0[hptr]>>1);
 if (--hptr < 0) hptr = lval - 1; /* skip an element in the sequence */
 if (--lptr < 0) lptr = lval - 1;
 r0[hptr] = INT_MOD_MASK&(r0[hptr] + r0[lptr]);
 r1[hptr] = INT_MOD_MASK&(r1[hptr] + r1[lptr]);
 *hp = (--hptr < 0) ? lval-1 : hptr;
 return (new_val>>1);
}

static int **initialize(int ngen, int param, unsigned seed, unsigned *nstart, unsigned
initseed)

{
 int i,j,k,l,*order, length;
 struct rngen **q;
 unsigned *nindex;
 int lval;

 length = valid[param].L;
 lval = length;

/* allocate memory for node number and fill of each generator */
 order = (int *) malloc(ngen*sizeof(int));
 q = (struct rngen **) malloc(ngen*sizeof(struct rngen *));
 if (q == NULL || order == NULL)
 return NULL;

 for (i=0;i<ngen;i++)
 {
 q[i] = (struct rngen *) malloc(sizeof(struct rngen));
 if (q[i] == NULL)
 return NULL;

www.manaraa.com

 103

 // q[i]->rng_type = rng_type;
 q[i]->hptr = length - 1;
 q[i]->si = (unsigned *) malloc((length-1)*sizeof(unsigned));
 q[i]->r0 = (unsigned *) malloc(length*sizeof(unsigned));
 q[i]->r1 = (unsigned *) malloc(length*sizeof(unsigned));
 q[i]->lval = length;
 q[i]->kval = valid[param].K;
 q[i]->param = param;
 q[i]->seed = seed;
 q[i]->init_seed = initseed;
 //q[i]->gentype = GENTYPE;

 if (q[i]->r1 == NULL || q[i]->r0 == NULL || q[i]->si == NULL)
 return NULL;
 }
/* specify register fills and node number arrays */
/* do fills in tree fashion so that all fills branch from index */
/* contained in nstart array */
 q[0]->stream_number = nstart[0];
 si_double(q[0]->si,nstart,length);
 get_fill(q[0]->si,q[0]->r0,param,seed);
 q[0]->si[0]++;
 get_fill(q[0]->si,q[0]->r1,param,seed);

 i = 1;
 order[0] = 0;
 if (ngen>1)
 while (1)
 {
 l = i;
 for (k=0;k<l;k++)
 {
 nindex = q[order[k]]->si;
 q[i]->stream_number = nindex[0];
 si_double(nindex,nindex, length);
 for (j=0;j<length-1;j++)
 q[i]->si[j] = nindex[j];
 get_fill(q[i]->si,q[i]->r0,param,seed);

www.manaraa.com

 104

 q[i]->si[0]++;
 get_fill(q[i]->si,q[i]->r1,param,seed);
 if (ngen == ++i)
 break;
 }

 if (ngen == i)
 break;

 for (k=l-1;k>0;k--)
 {
 order[2*k+1] = l+k;
 order[2*k] = order[k];
 }
 order[1] = l;
 }

 free(order);

 for (i=ngen-1;i>=0;i--)
 {
 k = 0;
 for (j=1;j<lval-1;j++)
 if (q[i]->si[j])
 k = 1;
 if (!k)
 break;
 for (j=0;j<length*RUNUP;j++)
 get_rn_int((int *)(q[i]));
 }

 while (i>=0)
 {
 for (j=0;j<4*length;j++)
 get_rn_int((int *)(q[i]));
 i--;
 }

 return((int **)q);

www.manaraa.com

 105

}

/**
***/
/**
***/
/* INIT_RNG's: user interface to start things off */
/**
***/
/**
***/

int *init_rng(int gennum, int total_gen, int seed, int param)

{
 int doexit=0,i,k, length;
 int **p=NULL, *rng;
 unsigned *nstart=NULL,*si;
 int lval, kval;
 int gseed = 0;

/* gives back one generator (node gennum) with updated spawning */
/* info; should be called total_gen times, with different value */
/* of gennum in [0,total_gen) each call */

 seed &= 0x7fffffff; /* Only 31 LSB of seed considered */

/* check whether generators have previously been defined */
/* guard against access while defining generator parameters for */
/* the 1st time
*/
 length = valid[param].L; /* determine parameters */
 k = valid[param].K;

 lval = length; /* determine parameters */

www.manaraa.com

 106

 kval = k;
 gseed = seed^GS0;

/* define the starting vector for the initial node */
 nstart = (unsigned *) malloc((length-1)*sizeof(unsigned));
 if (nstart == NULL)
 return NULL;

 nstart[0] = gennum;
 for (i=1;i<length-1;i++)
 nstart[i] = 0;
 p = initialize(1,param,seed^GS0,nstart,seed); /* create a generator */
 if (p==NULL)
 return NULL;
 ((struct rngen *)(p[0]))->stream_number = gennum;
/* update si array to allow for future spawning of generators */
 si = ((struct rngen *)(p[0]))->si;
 while (si[0] < total_gen && !si[1])
 si_double(si,si,length);
 free(nstart);
 rng = p[0];
 free(p);
 return rng;
}

www.manaraa.com

 107

B. Seed Initialization Algorithm Codes

/**
Name of code: initialize.cpp

Purpose of code: Seeding Alogorithm

Author of code: Yu Bi

Developed under the guidance of Gregory D. Peterson at The University of Tennessee in
the Tennessee Advanced Computing Laboratory.

Copyright (C) 2006 Yu Bi and Gregory D. Peterson

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to
Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/

#include "stdafx.h"
int _tmain(int argc, _TCHAR* argv[])
{
 int i;
 printf("\n Enter the number of Random Number Generators that you want\n");
 int GeneratorNumber=0;

www.manaraa.com

 108

 int parameter;
 char sz0[16];
 char sz1[16];
 FILE * stream0;
 FILE * stream1;
 FILE * seed0;
 FILE * seed1;
 FILE * seed2;
 FILE * seed3;
 FILE * seed4;
 FILE * seed00;
 FILE * seed11;
 unsigned num;
 unsigned k;
 unsigned* rn0;
 unsigned* rn1;
 _int16 temp0;
 _int16 temp1;
 int odd;
 int kodd;
 unsigned temp;
 printf("\n Enter the Type NO \n");
 printf("\n Select the type of Random Number Generator as follows\n please type the

NO. from 0 to 10\n");
 printf("\n 11. {1279,861,1,233}\n 1. {17,5,1,10}\n 2. {31,6,1,2} \n 3. {55,24,1,11}\n 4.

{63,31,1,14}\n 5.{127,97,1,21}\n 6.{521,353,1,100}\n 7. {521,168,1,83}\n 8.
{607,334,1,166}\n 9. {607,273,1,105}\n 10. {1279,418,1,208}\n");

 scanf("%d",¶meter);
 sprintf(sz0, "seed0%d.txt", parameter);
 sprintf(sz1, "seed1%d.txt", parameter);
/*--*/
 if((stream0 = fopen(sz0, "r+t")) != NULL)
 {
 /* Attempt to read in 25 characters */
 fscanf(stream0, "%u",&num);
 fscanf(stream0, "%u",&k);
 rn0 = new unsigned [num];
 for (i=0; i<num; i++)
 {

www.manaraa.com

 109

 fscanf(stream0, "%x",&rn0[i]);
 }
 fclose(stream0);
 }
 else
 printf("File could not be opened\n");
 /*--*/

 if((stream1 = fopen(sz1, "r+t")) != NULL)
 {
 /* Attempt to read in 25 characters */
 fscanf(stream1, "%u",&num);
 fscanf(stream1, "%u",&k);
 rn1 = new unsigned [num];
 for (i=0; i<num; i++)
 {
 fscanf(stream1, "%x",&rn1[i]);
 }

 fclose(stream1);
 }
 else
 printf("File could not be opened\n");

/*-----------------------Initialize the RNG X----------------------*/
 int j=0;
 kodd = k %2;
 if (kodd)
 {
 // K= Odd, follow the initilization rule of the l=odd, k=odd;
 odd = i %2;
 for (i=0; i< k; i++)
 {
 odd = i %2;
 if (odd)
 {
 j = num-k+i;
 if (j>num-1)
 j = i-k;

www.manaraa.com

 110

 rn0[i]= rn0[i]+rn0[j];
 }
 }
 }
 else
 {
// K= Even, follow the initilization rule of the l=odd, k=even;

 for (i= 0; i< num-k-1; i++)
 {
 odd = i %2;
 if (odd)
 {
 j = num-k+i;
 if (j>num-1)
 j = i-k;
 rn0[i]= rn0[i]+rn0[j];
 }
 }
 }
/*-------------------Intialize the RNG Y------------------------------------*/
 j=0;
 kodd = k %2;
 if (kodd)
 {
 odd = i %2;
 for (i=0; i< k; i++)
 {
 odd = i %2;
 if (odd)
 {
 j = num-k+i;
 if (j>num-1)
 j = i-k;
 rn1[i]= rn1[i]+rn1[j];
 }
 }
 }
 else

www.manaraa.com

 111

 {
 for (i= 0; i< num-k-1; i++)
 {
 odd = i %2;
 if (odd)
 {
 j = num-k+i;
 if (j>num-1)
 j = i-k;
 rn1[i]= rn1[i]+rn1[j];
 }
 }
 }
/*-----------------------Save the processed seeds into txt files---------*/
 seed0 = fopen("seed0.txt", "w+t");
 seed1 = fopen("seed1.txt", "w+t");
 seed00 = fopen("seed00.txt", "w+t");
 seed11 = fopen("seed11.txt", "w+t");
 seed2 = fopen("seed2.txt", "w+t");
 seed3 = fopen("seed3.txt", "w+t");
 seed4 = fopen("crayseeds.txt", "w+t");
 fprintf(seed0, "%u\r\n", num);
 fprintf(seed0, "%u\r\n", k);
 fprintf(seed1, "%u\r\n", num);
 fprintf(seed1, "%u\r\n", k);
 fprintf(seed00, "%u\r\n", num);
 fprintf(seed00, "%u\r\n", k);
 fprintf(seed11, "%u\r\n", num);
 fprintf(seed11, "%u\r\n", k);
 for (i=0; i<num; i++)
 {
 temp = rn0[i]& 0xff000000;
 temp0 = temp >> 24;
 fprintf(seed0, "%u\r\n", temp0);
 temp = rn0[i]&0x00ff0000;
 temp0 = temp >> 16;
 fprintf(seed0, "%u\r\n", temp0);
 temp = rn0[i]&0x0000ff00;
 temp0 = temp >> 8;

www.manaraa.com

 112

 fprintf(seed0, "%u\r\n", temp0);
 temp0 = rn0[i]&0x000000ff;
 fprintf(seed0, "%u\r\n", temp0);
 temp = rn1[i]& 0xff000000;
 temp1 = temp >> 24;
 fprintf(seed1, "%u\r\n", temp1);
 temp = rn1[i]&0x00ff0000;
 temp1 = temp >> 16;
 fprintf(seed1, "%u\r\n", temp1);
 temp = rn1[i]&0x0000ff00;
 temp1 = temp >> 8;
 fprintf(seed1, "%u\r\n", temp1);
 temp1 = rn1[i]&0x000000ff;
 fprintf(seed1, "%u\r\n", temp1);
 fprintf(seed00, "%x\r\n", rn0[i]);
 fprintf(seed11, "%x\r\n", rn1[i]);
 fprintf(seed2, "0x%x, ", rn0[i]);
 fprintf(seed3, "0x%x, ", rn1[i]);
 fprintf(seed4, "0x%.8x%.8x,", rn1[i], rn0[i]);
 }
/*---*/
 fclose(seed0);
 fclose(seed1);
 delete [] rn0;
 delete [] rn1;
 return 0;
}

www.manaraa.com

 113

Vita
Yu Bi was born in Shanghai, China. She started to study Electronics Engineering

at East China Normal University in 1997. She earned the top University Fellowship and

Huawei Fellowship during her undergraduate study. In 2001, she received her Bachelor of

Science degree and is currently pursuing her Master of Science degree in Computer

Engineering at UTK.

	A Reconfigurable Supercomputing Library for Accelerated Parallel Lagged-Fibonacci Pseudorandom Number Generation
	Recommended Citation

	Microsoft Word - Thesis_revision1.doc

